This work considers a scenario in which an edge server collects data from Internet of Things (IoT) devices equipped with wake-up receivers. Although this procedure enables on-demand data collection, there is still energy waste if the content of the transmitted data following the wake-up is irrelevant. To mitigate this, we advocate the use of Tiny Machine Learning (ML) to enable a semantic response from the IoT devices, so they can send only semantically relevant data. Nevertheless, receiving the ML model and the ML processing at the IoT devices consumes additional energy. We consider the specific instance of image retrieval and investigate the gain brought by the proposed scheme in terms of energy efficiency, considering both the energy cost of introducing the ML model as well as that of wireless communication. The numerical evaluation shows that, compared to a baseline scheme, the proposed scheme can realize both high retrieval accuracy and high energy efficiency, which reaches up to 70% energy reduction when the number of stored images is equal to or larger than 8.
Generalized Labeled Multi-Bernoulli (GLMB) densities arise in a host of multi-object system applications analogous to Gaussians in single-object filtering. However, computing the GLMB filtering density requires solving NP-hard problems. To alleviate this computational bottleneck, we develop a linear complexity Gibbs sampling framework for GLMB density computation. Specifically, we propose a tempered Gibbs sampler that exploits the structure of the GLMB filtering density to achieve an $\mathcal{O}(T(P+M))$ complexity, where $T$ is the number of iterations of the algorithm, $P$ and $M$ are the number hypothesized objects and measurements. This innovation enables the GLMB filter implementation to be reduced from an $\mathcal{O}(TP^{2}M)$ complexity to $\mathcal{O}(T(P+M+\log T)+PM)$. Moreover, the proposed framework provides the flexibility for trade-offs between tracking performance and computational load. Convergence of the proposed Gibbs sampler is established, and numerical studies are presented to validate the proposed GLMB filter implementation.
Both sensor networks and data fusion are essential foundations for developing the smart home Internet of Things (IoT) and related fields. We proposed a multi-channel sensor network construction method involving hardware, acquisition, and synchronization in the smart home environment and a smart home data fusion method (SHDFM) for multi-modal data (position, gait, voice, pose, facial expression, temperature, and humidity) generated in the smart home environment to address the configuration of a multi-channel sensor network, improve the quality and efficiency of various human activities and environmental data collection, and reduce the difficulty of multi-modal data fusion in the smart home. SHDFM contains 5 levels, with inputs and outputs as criteria to provide recommendations for multi-modal data fusion strategies in the smart home. We built a real experimental environment using the proposed method in this paper. To validate our method, we created a real experimental environment - a physical setup in a home-like scenario where the multi-channel sensor network and data fusion techniques were deployed and evaluated. The acceptance and testing results show that the proposed construction and data fusion methods can be applied to the examples with high robustness, replicability, and scalability. Besides, we discuss how smart homes with multi-channel sensor networks can support digital twins.
Conversational recommendation systems (CRS) aim to elicit user preferences and provide satisfying recommendations through natural language interactions. Existing CRS methods often assume that users have clear and consistent preferences, which may not reflect the reality of user decision-making processes. In this paper, we introduce a novel scenario called Vague Preference Multi-round Conversational Recommendation (VPMCR), which considers users' vague and dynamic preferences in CRS. In the VPMCR setting, we propose a solution called Adaptive Vague Preference Policy Learning (AVPPL), which consists of two components: Ambiguity-aware Soft Estimation (ASE) and Dynamism-aware Policy Learning (DPL). ASE estimates the vagueness of user feedback and captures their dynamic preferences using a choice-based preference extraction module and a time-aware decaying strategy. DPL leverages the preference distribution estimated by ASE to guide the conversation and adapt to changes in user preferences using a graph-based conversation modeling module and a vague preference policy learning module. We conduct extensive experiments on four real-world datasets and demonstrate the effectiveness of our method in the VPMCR scenario, setting a new benchmark for future research in CRS.
The edge intelligence (EI) has been widely applied recently. Spliting the model between device, edge server, and cloud can improve the performance of EI greatly. The model segmentation without user mobility has been investigated deeply by previous works. However, in most use cases of EI, the end devices are mobile. Only a few works have been carried out on this aspect. These works still have many issues, such as ignoring the energy consumption of mobile device, inappropriate network assumption, and low effectiveness on adaptiving user mobility, etc. Therefore, for addressing the disadvantages of model segmentation and resource allocation in previous works, we propose mobility and cost aware model segmentation and resource allocation algorithm for accelerating the inference at edge (MCSA). Specfically, in the scenario without user mobility, the loop interation gradient descent (Li-GD) algorithm is provided. When the mobile user has a large model inference task needs to be calculated, it will take the energy consumption of mobile user, the communication and computing resource renting cost, and the inference delay into account to find the optimal model segmentation and resource allocation strategy. In the scenario with user mobility, the mobiity aware Li-GD (MLi-GD) algorithm is proposed to calculate the optimal strategy. Then, the properties of the proposed algorithms are investigated, including convergence, complexity, and approximation ratio. The experimental results demonstrate the effectiveness of the proposed algorithms.
The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.
Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.