AI-based virtual assistants are increasingly used to support daily ideation tasks. The values or bias present in these agents can influence output in hidden ways. They may also affect how people perceive the ideas produced with these AI agents and lead to implications for the design of AI-based tools. We explored the effects of AI agents with different values on the ideation process and user perception of idea quality, ownership, agent competence, and values present in the output. Our study tasked 180 participants with brainstorming practical solutions to a set of problems with AI agents of different values. Results show no significant difference in self-evaluation of idea quality and perception of the agent based on value alignment; however, ideas generated reflected the AI's values and feeling of ownership is affected. This highlights an intricate interplay between AI values and human ideation, suggesting careful design considerations for future AI-supported brainstorming tools.
In recent years discussions centered around digital inheritance have increased among social media users and across blockchain ecosystems. As a result digital assets such as social media content cryptocurrencies and non-fungible tokens have become increasingly valuable and widespread, leading to the need for clear and secure mechanisms for transferring these assets upon the testators death or incapacitation. This study proposes a framework for digital inheritance using soulbound tokens and the social recovery pallet as a use case in the Polkadot and Kusama blockchain networks. The findings discussed within this study suggest that while soulbound tokens and the social recovery pallet offer a promising solution for creating a digital inheritance plan the findings also raise important considerations for testators digital executors and developers. While further research is needed to fully understand the potential impacts and risks of other technologies such as artificial intelligence and quantum computing this study provides a primer for users to begin planning a digital inheritance strategy and for developers to develop a more intuitive solution.
Exchangeability concerning a continuous exposure, X, implies no confounding bias when identifying average exposure effects of X, AEE(X). When X is measured with error (Xep), two challenges arise in identifying AEE(X). Firstly, exchangeability regarding Xep does not equal exchangeability regarding X. Secondly, the non-differential error assumption (NDEA) could be overly stringent in practice. To address them, this article proposes unifying exchangeability and exposure and confounder measurement errors with three novel concepts. The first, Probabilistic Exchangeability (PE), states that the outcomes of those with Xep=e are probabilistically exchangeable with the outcomes of those truly exposed to X=eT. The relationship between AEE(Xep) and AEE(X) in risk difference and ratio scales is mathematically expressed as a probabilistic certainty, termed exchangeability probability (Pe). Squared Pe (Pe2) quantifies the extent to which AEE(Xep) differs from AEE(X) due to exposure measurement error through mechanisms not akin to confounding mechanisms. The coefficient of determination (R2) in the regression of Xep against X may sometimes be sufficient to measure Pe2. The second concept, Emergent Pseudo Confounding (EPC), describes the bias introduced by exposure measurement error through mechanisms akin to confounding mechanisms. PE requires controlling for EPC, which is weaker than NDEA. The third, Emergent Confounding, describes when bias due to confounder measurement error arises. Adjustment for E(P)C can be performed like confounding adjustment. This paper provides maximum insight into when AEE(Xep) is an appropriate surrogate of AEE(X) and how to measure the difference between these two. Differential errors could be addressed and may not compromise causal inference.
In this work, from a theoretical lens, we aim to understand why large language model (LLM) empowered agents are able to solve decision-making problems in the physical world. To this end, consider a hierarchical reinforcement learning (RL) model where the LLM Planner and the Actor perform high-level task planning and low-level execution, respectively. Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting. Under proper assumptions on the pretraining data, we prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning. Additionally, we highlight the necessity for exploration beyond the subgoals derived from BAIL by proving that naively executing the subgoals returned by LLM leads to a linear regret. As a remedy, we introduce an $\epsilon$-greedy exploration strategy to BAIL, which is proven to incur sublinear regret when the pretraining error is small. Finally, we extend our theoretical framework to include scenarios where the LLM Planner serves as a world model for inferring the transition model of the environment and to multi-agent settings, enabling coordination among multiple Actors.
This paper investigates the use of deep transfer learning based on convolutional neural networks (CNNs) to monitor the condition of bolted joints using acoustic emissions. Bolted structures are critical components in many mechanical systems, and the ability to monitor their condition status is crucial for effective structural health monitoring. We evaluated the performance of our methodology using the ORION-AE benchmark, a structure composed of two thin beams connected by three bolts, where highly noisy acoustic emission measurements were taken to detect changes in the applied tightening torque of the bolts. The data used from this structure is derived from the transformation of acoustic emission data streams into images using continuous wavelet transform, and leveraging pretrained CNNs for feature extraction and denoising. Our experiments compared single-sensor versus multiple-sensor fusion for estimating the tightening level (loosening) of bolts and evaluated the use of raw versus prefiltered data on the performance. We particularly focused on the generalization capabilities of CNN-based transfer learning across different measurement campaigns and we studied ordinal loss functions to penalize incorrect predictions less severely when close to the ground truth, thereby encouraging misclassification errors to be in adjacent classes. Network configurations as well as learning rate schedulers are also investigated, and super-convergence is obtained, i.e., high classification accuracy is achieved in a few number of iterations with different networks. Furthermore, results demonstrate the generalization capabilities of CNN-based transfer learning for monitoring bolted structures by acoustic emission with varying amounts of prior information required during training.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.
Recommendation systems have become popular and effective tools to help users discover their interesting items by modeling the user preference and item property based on implicit interactions (e.g., purchasing and clicking). Humans perceive the world by processing the modality signals (e.g., audio, text and image), which inspired researchers to build a recommender system that can understand and interpret data from different modalities. Those models could capture the hidden relations between different modalities and possibly recover the complementary information which can not be captured by a uni-modal approach and implicit interactions. The goal of this survey is to provide a comprehensive review of the recent research efforts on the multimodal recommendation. Specifically, it shows a clear pipeline with commonly used techniques in each step and classifies the models by the methods used. Additionally, a code framework has been designed that helps researchers new in this area to understand the principles and techniques, and easily runs the SOTA models. Our framework is located at: //github.com/enoche/MMRec
With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.
Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.
Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.