亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Physical activity patterns can be informative about a patient's health status. Traditionally, activity data have been gathered using patient self-report. However, these subjective data can suffer from bias and are difficult to collect over long time periods. Smartphones offer an opportunity to address these challenges. The smartphone has built-in sensors that can be programmed to collect data objectively, unobtrusively, and continuously. Due to their widespread adoption, smartphones are also accessible to most of the population. A main challenge in smartphone-based activity recognition is extracting information optimally from multiple sensors to identify the unique features of different activities. In our study, we analyze data collected by the accelerometer and gyroscope, which measure the phone's acceleration and angular velocity, respectively. We propose an extension to the "movelet method" that jointly incorporates both sensors. We also apply this joint-sensor method to a data set we collected previously. The findings show that combining data from the two sensors can result in more accurate activity recognition than using each sensor alone. For example, the joint-sensor method reduces errors of the gyroscope-only method in differentiating between standing and sitting. It also reduces errors of the accelerometer-only method in classifying vigorous activities.

相關內容

Objective: When patients develop acute respiratory failure, accurately identifying the underlying etiology is essential for determining the best treatment. However, differentiating between common medical diagnoses can be challenging in clinical practice. Machine learning models could improve medical diagnosis by aiding in the diagnostic evaluation of these patients. Materials and Methods: Machine learning models were trained to predict the common causes of acute respiratory failure (pneumonia, heart failure, and/or COPD). Models were trained using chest radiographs and clinical data from the electronic health record (EHR) and applied to an internal and external cohort. Results: The internal cohort of 1,618 patients included 508 (31%) with pneumonia, 363 (22%) with heart failure, and 137 (8%) with COPD based on physician chart review. A model combining chest radiographs and EHR data outperformed models based on each modality alone. Models had similar or better performance compared to a randomly selected physician reviewer. For pneumonia, the combined model area under the receiver operating characteristic curve (AUROC) was 0.79 (0.77-0.79), image model AUROC was 0.74 (0.72-0.75), and EHR model AUROC was 0.74 (0.70-0.76). For heart failure, combined: 0.83 (0.77-0.84), image: 0.80 (0.71-0.81), and EHR: 0.79 (0.75-0.82). For COPD, combined: AUROC = 0.88 (0.83-0.91), image: 0.83 (0.77-0.89), and EHR: 0.80 (0.76-0.84). In the external cohort, performance was consistent for heart failure and increased for COPD, but declined slightly for pneumonia. Conclusions: Machine learning models combining chest radiographs and EHR data can accurately differentiate between common causes of acute respiratory failure. Further work is needed to determine how these models could act as a diagnostic aid to clinicians in clinical settings.

The blockchain-based smart contract lacks privacy since the contract state and instruction code are exposed to the public. Combining smart-contract execution with Trusted Execution Environments (TEEs) provides an efficient solution, called TEE-assisted smart contracts, for protecting the confidentiality of contract states. However, the combination approaches are varied, and a systematic study is absent. Newly released systems may fail to draw upon the experience learned from existing protocols, such as repeating known design mistakes or applying TEE technology in insecure ways. In this paper, we first investigate and categorize the existing systems into two types: the layer-one solution and layer-two solution. Then, we establish an analysis framework to capture their common lights, covering the desired properties (for contract services), threat models, and security considerations (for underlying systems). Based on our taxonomy, we identify their ideal functionalities and uncover the fundamental flaws and reasons for the challenges in each specification design. We believe that this work would provide a guide for the development of TEE-assisted smart contracts, as well as a framework to evaluate future TEE-assisted confidential contract systems.

Ground Penetrating Radar (GPR) is a very useful non-destructive evaluation (NDE) device for locating and mapping underground assets prior to digging and trenching efforts in construction. This paper presents a novel robotic system to automate the GPR data collection process, localize the underground utilities, interpret and reconstruct the underground objects for better visualization allowing regular non-professional users to understand the survey results. This system is composed of three modules: 1) an Omni-directional robotic data collection platform, that carries an RGB-D camera with an Inertial Measurement Unit (IMU) and a GPR antenna to perform automatic GPR data collection, and tag each GPR measurement with visual positioning information at every sampling step; 2) a learning-based migration module to interpret the raw GPR B-scan image into a 2D cross-section model of objects; 3) a 3D reconstruction module, i.e., GPRNet, to generate underground utility model represented as fine 3D point cloud. Comparative studies are performed on synthetic data and field GPR raw data with various incompleteness and noise. Experimental results demonstrate that our proposed method achieves a $30.0\%$ higher GPR imaging accuracy in mean Intersection Over Union (IoU) than the conventional back projection (BP) migration approach and $6.9\%$-$7.2\%$ less loss in Chamfer Distance (CD) than baseline methods regarding point cloud model reconstruction. The GPR-based robotic inspection provides an effective tool for civil engineers to detect and survey underground utilities before construction.

Human action recognition (HAR) in videos is one of the core tasks of video understanding. Based on video sequences, the goal is to recognize actions performed by humans. While HAR has received much attention in the visible spectrum, action recognition in infrared videos is little studied. Accurate recognition of human actions in the infrared domain is a highly challenging task because of the redundant and indistinguishable texture features present in the sequence. Furthermore, in some cases, challenges arise from the irrelevant information induced by the presence of multiple active persons not contributing to the actual action of interest. Therefore, most existing methods consider a standard paradigm that does not take into account these challenges, which is in some part due to the ambiguous definition of the recognition task in some cases. In this paper, we propose a new method that simultaneously learns to recognize efficiently human actions in the infrared spectrum, while automatically identifying the key-actors performing the action without using any prior knowledge or explicit annotations. Our method is composed of three stages. In the first stage, optical flow-based key-actor identification is performed. Then for each key-actor, we estimate key-poses that will guide the frame selection process. A scale-invariant encoding process along with embedded pose filtering are performed in order to enhance the quality of action representations. Experimental results on InfAR dataset show that our proposed model achieves promising recognition performance and learns useful action representations.

The most common sensing modalities found in a robot perception system are vision and touch, which together can provide global and highly localized data for manipulation. However, these sensing modalities often fail to adequately capture the behavior of target objects during the critical moments as they transition out of static, controlled contact with an end-effector to dynamic and uncontrolled motion. In this work, we present a novel multimodal visuotactile sensor that provides simultaneous visuotactile and proximity depth data. The sensor integrates an RGB camera and air pressure sensor to sense touch with an infrared time-of-flight (ToF) camera to sense proximity by leveraging a selectively transmissive soft membrane to enable the dual sensing modalities. We present the mechanical design, fabrication techniques, algorithm implementations, and evaluation of the sensor's tactile and proximity modalities. The sensor is demonstrated in three open-loop robotic tasks: approaching and contacting an object, catching, and throwing. The fusion of tactile and proximity data could be used to capture key information about a target object's transition behavior for sensor-based control in dynamic manipulation.

Bluetooth technology has enabled short-range wireless communication for billions of devices. Bluetooth Low-Energy (BLE) variant aims at improving power consumption on battery-constrained devices. BLE-enabled devices broadcast information (e.g., as beacons) to nearby devices via advertisements. Unfortunately, such functionality can become a double-edged sword at the hands of attackers. In this paper, we primarily show how an attacker can exploit BLE advertisements to exfiltrate information from BLE-enable devices. In particular, our attack establishes a communication medium between two devices without requiring any prior authentication or pairing. We develop a proof-of-concept attack framework on the Android ecosystem and assess its performance via a thorough set of experiments. Our results indicate that such an exfiltration attack is indeed possible though with a low data rate. Nevertheless, we also demonstrate potential use cases and enhancements to our attack that can further its severeness. Finally, we discuss possible countermeasures to prevent such an attack.

Blockchain and smart contract technology are novel approaches to data and code management that facilitate trusted computing by allowing for development in a distributed and decentralized manner. Testing smart contracts comes with its own set of challenges which have not yet been fully identified and explored. Although existing tools can identify and discover known vulnerabilities and their interactions on the Ethereum blockchain through random search or symbolic execution, these tools generally do not produce test suites suitable for human oracles. In this paper, we present AGSOLT (Automated Generator of Solidity Test Suites). We demonstrate its efficiency by implementing two search algorithms to automatically generate test suites for stand-alone Solidity smart contracts, taking into account some of the blockchain-specific challenges. To test AGSOLT, we compared a random search algorithm and a genetic algorithm on a set of 36 real-world smart contracts. We found that AGSOLT is capable of achieving high branch coverage with both approaches and even discovered some errors in some of the most popular Solidity smart contracts on Github.

Present-day atomistic simulations generate long trajectories of ever more complex systems. Analyzing these data, discovering metastable states, and uncovering their nature is becoming increasingly challenging. In this paper, we first use the variational approach to conformation dynamics to discover the slowest dynamical modes of the simulations. This allows the different metastable states of the system to be located and organized hierarchically. The physical descriptors that characterize metastable states are discovered by means of a machine learning method. We show in the cases of two proteins, Chignolin and Bovine Pancreatic Trypsin Inhibitor, how such analysis can be effortlessly performed in a matter of seconds. Another strength of our approach is that it can be applied to the analysis of both unbiased and biased simulations.

This study investigates whether the phonological features derived from the Featurally Underspecified Lexicon model can be applied in text-to-speech systems to generate native and non-native speech in English and Mandarin. We present a mapping of ARPABET/pinyin to SAMPA/SAMPA-SC and then to phonological features. This mapping was tested for whether it could lead to the successful generation of native, non-native, and code-switched speech in the two languages. We ran two experiments, one with a small dataset and one with a larger dataset. The results supported that phonological features could be used as a feasible input system for languages in or not in the train data, although further investigation is needed to improve model performance. The results lend support to FUL by presenting successfully synthesised output, and by having the output carrying a source-language accent when synthesising a language not in the training data. The TTS process stimulated human second language acquisition process and thus also confirm FUL's ability to account for acquisition.

We present a method for the control of robot swarms which allows the shaping and the translation of patterns of simple robots ("smart particles"), using two types of devices. These two types represent a hierarchy: a larger group of simple, oblivious robots (which we call the workers) that is governed by simple local attraction forces, and a smaller group (the guides) with sufficient mission knowledge to create and maintain a desired pattern by operating on the local forces of the former. This framework exploits the knowledge of the guides, which coordinate to shape the workers like smart particles by changing their interaction parameters. We study the approach with a large scale simulation experiment in a physics based simulator with up to 1000 robots forming three different patterns. Our experiments reveal that the approach scales well with increasing robot numbers, and presents little pattern distortion for a set of target moving shapes. We evaluate the approach on a physical swarm of robots that use visual inertial odometry to compute their relative positions and obtain results that are comparable with simulation. This work lays foundation for designing and coordinating configurable smart particles, with applications in smart materials and nanomedicine.

北京阿比特科技有限公司