This paper introduces the Membership Inference Test (MINT), a novel approach that aims to empirically assess if specific data was used during the training of Artificial Intelligence (AI) models. Specifically, we propose two novel MINT architectures designed to learn the distinct activation patterns that emerge when an audited model is exposed to data used during its training process. The first architecture is based on a Multilayer Perceptron (MLP) network and the second one is based on Convolutional Neural Networks (CNNs). The proposed MINT architectures are evaluated on a challenging face recognition task, considering three state-of-the-art face recognition models. Experiments are carried out using six publicly available databases, comprising over 22 million face images in total. Also, different experimental scenarios are considered depending on the context available of the AI model to test. Promising results, up to 90% accuracy, are achieved using our proposed MINT approach, suggesting that it is possible to recognize if an AI model has been trained with specific data.
This paper introduces TinySaver, an early-exit-like dynamic model compression approach which employs tiny models to substitute large models adaptively. Distinct from traditional compression techniques, dynamic methods like TinySaver can leverage the difficulty differences to allow certain inputs to complete their inference processes early, thereby conserving computational resources. Most existing early exit designs are implemented by attaching additional network branches to the model's backbone. Our study, however, reveals that completely independent tiny models can replace a substantial portion of the larger models' job with minimal impact on performance. Employing them as the first exit can remarkably enhance computational efficiency. By searching and employing the most appropriate tiny model as the computational saver for a given large model, the proposed approaches work as a novel and generic method to model compression. This finding will help the research community in exploring new compression methods to address the escalating computational demands posed by rapidly evolving AI models. Our evaluation of this approach in ImageNet-1k classification demonstrates its potential to reduce the number of compute operations by up to 90%, with only negligible losses in performance, across various modern vision models. The code of this work will be available.
Large Language Models (LLMs) have been reported to outperform existing automatic evaluation metrics in some tasks, such as text summarization and machine translation. However, there has been a lack of research on LLMs as evaluators in grammatical error correction (GEC). In this study, we investigate the performance of LLMs in GEC evaluation by employing prompts designed to incorporate various evaluation criteria inspired by previous research. Our extensive experimental results demonstrate that GPT-4 achieved Kendall's rank correlation of 0.662 with human judgments, surpassing all existing methods. Furthermore, in recent GEC evaluations, we have underscored the significance of the LLMs scale and particularly emphasized the importance of fluency among evaluation criteria.
Accurate transcription of Bengali text to the International Phonetic Alphabet (IPA) is a challenging task due to the complex phonology of the language and context-dependent sound changes. This challenge is even more for regional Bengali dialects due to unavailability of standardized spelling conventions for these dialects, presence of local and foreign words popular in those regions and phonological diversity across different regions. This paper presents an approach to this sequence-to-sequence problem by introducing the District Guided Tokens (DGT) technique on a new dataset spanning six districts of Bangladesh. The key idea is to provide the model with explicit information about the regional dialect or "district" of the input text before generating the IPA transcription. This is achieved by prepending a district token to the input sequence, effectively guiding the model to understand the unique phonetic patterns associated with each district. The DGT technique is applied to fine-tune several transformer-based models, on this new dataset. Experimental results demonstrate the effectiveness of DGT, with the ByT5 model achieving superior performance over word-based models like mT5, BanglaT5, and umT5. This is attributed to ByT5's ability to handle a high percentage of out-of-vocabulary words in the test set. The proposed approach highlights the importance of incorporating regional dialect information into ubiquitous natural language processing systems for languages with diverse phonological variations. The following work was a result of the "Bhashamul" challenge, which is dedicated to solving the problem of Bengali text with regional dialects to IPA transcription //www.kaggle.com/competitions/regipa/. The training and inference notebooks are available through the competition link.
This paper introduces Spatial Diagrammatic Instructions (SDIs), an approach for human operators to specify objectives and constraints that are related to spatial regions in the working environment. Human operators are enabled to sketch out regions directly on camera images that correspond to the objectives and constraints. These sketches are projected to 3D spatial coordinates, and continuous Spatial Instruction Maps (SIMs) are learned upon them. These maps can then be integrated into optimization problems for tasks of robots. In particular, we demonstrate how Spatial Diagrammatic Instructions can be applied to solve the Base Placement Problem of mobile manipulators, which concerns the best place to put the manipulator to facilitate a certain task. Human operators can specify, via sketch, spatial regions of interest for a manipulation task and permissible regions for the mobile manipulator to be at. Then, an optimization problem that maximizes the manipulator's reachability, or coverage, over the designated regions of interest while remaining in the permissible regions is solved. We provide extensive empirical evaluations, and show that our formulation of Spatial Instruction Maps provides accurate representations of user-specified diagrammatic instructions. Furthermore, we demonstrate that our diagrammatic approach to the Mobile Base Placement Problem enables higher quality solutions and faster run-time.
This research introduces a novel approach for assisting the creation of Asset Administration Shell (AAS) instances for digital twin modeling within the context of Industry 4.0, aiming to enhance interoperability in smart manufacturing and reduce manual effort. We construct a "semantic node" data structure to capture the semantic essence of textual data. Then, a system powered by large language models is designed and implemented to process "semantic node" and generate AAS instance models from textual technical data. Our evaluation demonstrates a 62-79% effective generation rate, indicating a substantial proportion of manual creation effort can be converted into easier validation effort, thereby reducing the time and cost in creating AAS instance models. In our evaluation, a comparative analysis of different LLMs and an in-depth ablation study of Retrieval-Augmented Generation (RAG) mechanisms provide insights into the effectiveness of LLM systems for interpreting technical concepts. Our findings emphasize LLMs' capability in automating AAS instance creation, enhancing semantic interoperability, and contributing to the broader field of semantic interoperability for digital twins in industrial applications. The prototype implementation and evaluation results are released on our GitHub Repository with the link: //github.com/YuchenXia/AASbyLLM
In this paper, we borrow the large language model (LLM) ChatGPT-3.5 to automatically and quickly design a new metaheuristic algorithm (MA) with only a small amount of input. The novel animal-inspired MA named zoological search optimization (ZSO) draws inspiration from the collective behaviors of animals for solving continuous optimization problems. Specifically, the basic ZSO algorithm involves two search operators: the prey-predator interaction operator and the social flocking operator to balance exploration and exploitation well. Besides, the standard prompt engineering framework CRISPE (i.e., Capacity and Role, Insight, Statement, Personality, and Experiment) is responsible for the specific prompt design. Furthermore, we designed four variants of the ZSO algorithm with slight human-interacted adjustment. In numerical experiments, we comprehensively investigate the performance of ZSO-derived algorithms on CEC2014 benchmark functions, CEC2022 benchmark functions, and six engineering optimization problems. 20 popular and state-of-the-art MAs are employed as competitors. The experimental results and statistical analysis confirm the efficiency and effectiveness of ZSO-derived algorithms. At the end of this paper, we explore the prospects for the development of the metaheuristics community under the LLM era.
Synthesising appropriate choreographies from music remains an open problem. We introduce MDLT, a novel approach that frames the choreography generation problem as a translation task. Our method leverages an existing data set to learn to translate sequences of audio into corresponding dance poses. We present two variants of MDLT: one utilising the Transformer architecture and the other employing the Mamba architecture. We train our method on AIST++ and PhantomDance data sets to teach a robotic arm to dance, but our method can be applied to a full humanoid robot. Evaluation metrics, including Average Joint Error and Frechet Inception Distance, consistently demonstrate that, when given a piece of music, MDLT excels at producing realistic and high-quality choreography. The code can be found at github.com/meowatthemoon/MDLT.
In this paper, we introduce a novel convex formulation that seamlessly integrates the Material Point Method (MPM) with articulated rigid body dynamics in frictional contact scenarios. We extend the linear corotational hyperelastic model into the realm of elastoplasticity and include an efficient return mapping algorithm. This approach is particularly effective for MPM simulations involving significant deformation and topology changes, while preserving the convexity of the optimization problem. Our method ensures global convergence, enabling the use of large simulation time steps without compromising robustness. We have validated our approach through rigorous testing and performance evaluations, highlighting its superior capabilities in managing complex simulations relevant to robotics. Compared to previous MPM based robotic simulators, our method significantly improves the stability of contact resolution -- a critical factor in robot manipulation tasks. We make our method available in the open-source robotics toolkit, Drake.
This paper explores the pressing issue of risk assessment in Large Language Models (LLMs) as they become increasingly prevalent in various applications. Focusing on how reward models, which are designed to fine-tune pretrained LLMs to align with human values, perceive and categorize different types of risks, we delve into the challenges posed by the subjective nature of preference-based training data. By utilizing the Anthropic Red-team dataset, we analyze major risk categories, including Information Hazards, Malicious Uses, and Discrimination/Hateful content. Our findings indicate that LLMs tend to consider Information Hazards less harmful, a finding confirmed by a specially developed regression model. Additionally, our analysis shows that LLMs respond less stringently to Information Hazards compared to other risks. The study further reveals a significant vulnerability of LLMs to jailbreaking attacks in Information Hazard scenarios, highlighting a critical security concern in LLM risk assessment and emphasizing the need for improved AI safety measures.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.