亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a generalized version of the discretization-invariant neural operator and prove that the network is a universal approximation in the operator sense. Moreover, by incorporating additional terms in the architecture, we establish a connection between this discretization-invariant neural operator network and those discussed before. The discretization-invariance property of the operator network implies that different input functions can be sampled using various sensor locations within the same training and testing phases. Additionally, since the network learns a ``basis'' for the input and output function spaces, our approach enables the evaluation of input functions on different discretizations. To evaluate the performance of the proposed discretization-invariant neural operator, we focus on challenging examples from multiscale partial differential equations. Our experimental results indicate that the method achieves lower prediction errors compared to previous networks and benefits from its discretization-invariant property.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際(ji)網絡(luo)會議。 Publisher:IFIP。 SIT:

We present a constant-factor approximation algorithm for the Nash social welfare maximization problem with subadditive valuations accessible via demand queries. More generally, we propose a template for NSW optimization by solving a configuration-type LP and using a rounding procedure for (utilitarian) social welfare as a blackbox, which could be applicable to other variants of the problem.

We consider the linear lambda-calculus extended with the sup type constructor, which provides an additive conjunction along with a non-deterministic destructor. The sup type constructor has been introduced in the context of quantum computing. In this paper, we study this type constructor within a simple linear logic categorical model, employing the category of semimodules over a commutative semiring. We demonstrate that the non-deterministic destructor finds a suitable model in a "weighted" codiagonal map. This approach offers a valid and insightful alternative to interpreting non-determinism, especially in instances where the conventional Powerset Monad interpretation does not align with the category's structure, as is the case with the category of semimodules. The validity of this alternative relies on the presence of biproducts within the category.

Quantifying the performance bound of an integrated localization and communication (ILAC) system and the trade-off between communication and localization performance is critical. In this letter, we consider an ILAC system that can perform communication and localization via time-domain or frequency-domain resource allocation. We develop an analytical framework to derive the closed-form expression of the capacity loss versus localization Cramer-Rao lower bound (CRB) loss via time-domain and frequency-domain resource allocation. Simulation results validate the analytical model and demonstrate that frequency-domain resource allocation is preferable in scenarios with a smaller number of antennas at the next generation nodeB (gNB) and a larger distance between user equipment (UE) and gNB, while time-domain resource allocation is preferable in scenarios with a larger number of antennas and smaller distance between UE and the gNB.

We develop a new policy gradient and actor-critic algorithm for solving mean-field control problems within a continuous time reinforcement learning setting. Our approach leverages a gradient-based representation of the value function, employing parametrized randomized policies. The learning for both the actor (policy) and critic (value function) is facilitated by a class of moment neural network functions on the Wasserstein space of probability measures, and the key feature is to sample directly trajectories of distributions. A central challenge addressed in this study pertains to the computational treatment of an operator specific to the mean-field framework. To illustrate the effectiveness of our methods, we provide a comprehensive set of numerical results. These encompass diverse examples, including multi-dimensional settings and nonlinear quadratic mean-field control problems with controlled volatility.

Early warnings for dynamical transitions in complex systems or high-dimensional observation data are essential in many real world applications, such as gene mutation, brain diseases, natural disasters, financial crises, and engineering reliability. To effectively extract early warning signals, we develop a novel approach: the directed anisotropic diffusion map that captures the latent evolutionary dynamics in low-dimensional manifold. Applying the methodology to authentic electroencephalogram (EEG) data, we successfully find the appropriate effective coordinates, and derive early warning signals capable of detecting the tipping point during the state transition. Our method bridges the latent dynamics with the original dataset. The framework is validated to be accurate and effective through numerical experiments, in terms of density and transition probability. It is shown that the second coordinate holds meaningful information for critical transition in various evaluation metrics.

A novel and fully distributed optimization method is proposed for the distributed robust convex program (DRCP) over a time-varying unbalanced directed network without imposing any differentiability assumptions. Firstly, a tractable approximated DRCP (ADRCP) is introduced by discretizing the semi-infinite constraints into a finite number of inequality constraints and restricting the right-hand side of the constraints with a proper positive parameter, which will be iteratively solved by a random-fixed projection algorithm. Secondly, a cutting-surface consensus approach is proposed for locating an approximately optimal consensus solution of the DRCP with guaranteed feasibility. This approach is based on iteratively approximating the DRCP by successively reducing the restriction parameter of the right-hand constraints and populating the cutting-surfaces into the existing finite set of constraints. Thirdly, to ensure finite-time convergence of the distributed optimization, a distributed termination algorithm is developed based on uniformly local consensus and zeroth-order optimality under uniformly strongly connected graphs. Fourthly, it is proved that the cutting-surface consensus approach converges within a finite number of iterations. Finally, the effectiveness of the approach is illustrated through a numerical example.

A general class of the almost instantaneous fixed-to-variable-length (AIFV) codes is proposed, which contains every possible binary code we can make when allowing finite bits of decoding delay. The contribution of the paper lies in the following. (i) Introducing $N$-bit-delay AIFV codes, constructed by multiple code trees with higher flexibility than the conventional AIFV codes. (ii) Proving that the proposed codes can represent any uniquely-encodable and uniquely-decodable variable-to-variable length codes. (iii) Showing how to express codes as multiple code trees with minimum decoding delay. (iv) Formulating the constraints of decodability as the comparison of intervals in the real number line. The theoretical results in this paper are expected to be useful for further study on AIFV codes.

We utilize a discrete version of the notion of degree of freedom to prove a sharp min-entropy-variance inequality for integer valued log-concave random variables. More specifically, we show that the geometric distribution minimizes the min-entropy within the class of log-concave probability sequences with fixed variance. As an application, we obtain a discrete R\'enyi entropy power inequality in the log-concave case, which improves a result of Bobkov, Marsiglietti and Melbourne (2022).

Explicit antisymmetrization of a neural network is a potential candidate for a universal function approximator for generic antisymmetric functions, which are ubiquitous in quantum physics. However, this procedure is a priori factorially costly to implement, making it impractical for large numbers of particles. The strategy also suffers from a sign problem. Namely, due to near-exact cancellation of positive and negative contributions, the magnitude of the antisymmetrized function may be significantly smaller than before anti-symmetrization. We show that the anti-symmetric projection of a two-layer neural network can be evaluated efficiently, opening the door to using a generic antisymmetric layer as a building block in anti-symmetric neural network Ansatzes. This approximation is effective when the sign problem is controlled, and we show that this property depends crucially the choice of activation function under standard Xavier/He initialization methods. As a consequence, using a smooth activation function requires re-scaling of the neural network weights compared to standard initializations.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司