亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A wide variety of model explanation approaches have been proposed in recent years, all guided by very different rationales and heuristics. In this paper, we take a new route and cast interpretability as a statistical inference problem. We propose a general deep probabilistic model designed to produce interpretable predictions. The model parameters can be learned via maximum likelihood, and the method can be adapted to any predictor network architecture and any type of prediction problem. Our method is a case of amortized interpretability models, where a neural network is used as a selector to allow for fast interpretation at inference time. Several popular interpretability methods are shown to be particular cases of regularised maximum likelihood for our general model. We propose new datasets with ground truth selection which allow for the evaluation of the features importance map. Using these datasets, we show experimentally that using multiple imputation provides more reasonable interpretations.

相關內容

We present a new framework for modelling multivariate extremes, based on an angular-radial representation of the probability density function. Under this representation, the problem of modelling multivariate extremes is transformed to that of modelling an angular density and the tail of the radial variable, conditional on angle. Motivated by univariate theory, we assume that the tail of the conditional radial distribution converges to a generalised Pareto (GP) distribution. To simplify inference, we also assume that the angular density is continuous and finite and the GP parameter functions are continuous with angle. We refer to the resulting model as the semi-parametric angular-radial (SPAR) model for multivariate extremes. We consider the effect of the choice of polar coordinate system and introduce generalised concepts of angular-radial coordinate systems and generalised scalar angles in two dimensions. We show that under certain conditions, the choice of polar coordinate system does not affect the validity of the SPAR assumptions. However, some choices of coordinate system lead to simpler representations. In contrast, we show that the choice of margin does affect whether the model assumptions are satisfied. In particular, the use of Laplace margins results in a form of the density function for which the SPAR assumptions are satisfied for many common families of copula, with various dependence classes. We show that the SPAR model provides a more versatile framework for characterising multivariate extremes than provided by existing approaches, and that several commonly-used approaches are special cases of the SPAR model.

We study the problem of approximately transforming a sample from a source statistical model to a sample from a target statistical model without knowing the parameters of the source model, and construct several computationally efficient such reductions between statistical experiments. In particular, we provide computationally efficient procedures that approximately reduce uniform, Erlang, and Laplace location models to general target families. We illustrate our methodology by establishing nonasymptotic reductions between some canonical high-dimensional problems, spanning mixtures of experts, phase retrieval, and signal denoising. Notably, the reductions are structure preserving and can accommodate missing data. We also point to a possible application in transforming one differentially private mechanism to another.

Generative artificial intelligence tools like large language models are rapidly transforming academic research and real world applications. However, discussions on ethical guidelines for generative AI in science remain fragmented, underscoring the urgent need for consensus based standards. This paper offers an initial framework by developing analyses and mitigation strategies across five key themes: understanding model limitations regarding truthfulness and bias; respecting privacy, confidentiality, and copyright; avoiding plagiarism and policy violations when incorporating model output; ensuring applications provide overall benefit; and using AI transparently and reproducibly. Common scenarios are outlined to demonstrate potential ethical violations. We argue that global consensus coupled with professional training and reasonable enforcement are critical to promoting the benefits of AI while safeguarding research integrity.

We develop a theory of asymptotic efficiency in regular parametric models when data confidentiality is ensured by local differential privacy (LDP). Even though efficient parameter estimation is a classical and well-studied problem in mathematical statistics, it leads to several non-trivial obstacles that need to be tackled when dealing with the LDP case. Starting from a standard parametric model $\mathcal P=(P_\theta)_{\theta\in\Theta}$, $\Theta\subseteq\mathbb R^p$, for the iid unobserved sensitive data $X_1,\dots, X_n$, we establish local asymptotic mixed normality (along subsequences) of the model $$Q^{(n)}\mathcal P=(Q^{(n)}P_\theta^n)_{\theta\in\Theta}$$ generating the sanitized observations $Z_1,\dots, Z_n$, where $Q^{(n)}$ is an arbitrary sequence of sequentially interactive privacy mechanisms. This result readily implies convolution and local asymptotic minimax theorems. In case $p=1$, the optimal asymptotic variance is found to be the inverse of the supremal Fisher-Information $\sup_{Q\in\mathcal Q_\alpha} I_\theta(Q\mathcal P)\in\mathbb R$, where the supremum runs over all $\alpha$-differentially private (marginal) Markov kernels. We present an algorithm for finding a (nearly) optimal privacy mechanism $\hat{Q}$ and an estimator $\hat{\theta}_n(Z_1,\dots, Z_n)$ based on the corresponding sanitized data that achieves this asymptotically optimal variance.

In social choice theory with ordinal preferences, a voting method satisfies the axiom of positive involvement if adding to a preference profile a voter who ranks an alternative uniquely first cannot cause that alternative to go from winning to losing. In this note, we prove a new impossibility theorem concerning this axiom: there is no ordinal voting method satisfying positive involvement that also satisfies the Condorcet winner and loser criteria, resolvability, and a common invariance property for Condorcet methods, namely that the choice of winners depends only on the ordering of majority margins by size.

The design of particle simulation methods for collisional plasma physics has always represented a challenge due to the unbounded total collisional cross section, which prevents a natural extension of the classical Direct Simulation Monte Carlo (DSMC) method devised for the Boltzmann equation. One way to overcome this problem is to consider the design of Monte Carlo algorithms that are robust in the so-called grazing collision limit. In the first part of this manuscript, we will focus on the construction of collision algorithms for the Landau-Fokker-Planck equation based on the grazing collision asymptotics and which avoids the use of iterative solvers. Subsequently, we discuss problems involving uncertainties and show how to develop a stochastic Galerkin projection of the particle dynamics which permits to recover spectral accuracy for smooth solutions in the random space. Several classical numerical tests are reported to validate the present approach.

The Discrete Event System Specification formalism (DEVS), which supports hierarchical and modular model composition, has been widely used to understand, analyze and develop a variety of systems. DEVS has been implemented in various languages and platforms over the years. The DEVStone benchmark was conceived to generate a set of models with varied structure and behavior, and to automate the evaluation of the performance of DEVS-based simulators. However, DEVStone is still in a preliminar phase and more model analysis is required. In this paper, we revisit DEVStone introducing new equations to compute the number of events triggered. We also introduce a new benchmark, called HOmem, designed as an alternative version of HOmod, with similar CPU and memory requirements, but with an easier implementation and analytically more manageable. Finally, we compare both the performance and memory footprint of five different DEVS simulators in two different hardware platforms.

Multi-fidelity models provide a framework for integrating computational models of varying complexity, allowing for accurate predictions while optimizing computational resources. These models are especially beneficial when acquiring high-accuracy data is costly or computationally intensive. This review offers a comprehensive analysis of multi-fidelity models, focusing on their applications in scientific and engineering fields, particularly in optimization and uncertainty quantification. It classifies publications on multi-fidelity modeling according to several criteria, including application area, surrogate model selection, types of fidelity, combination methods and year of publication. The study investigates techniques for combining different fidelity levels, with an emphasis on multi-fidelity surrogate models. This work discusses reproducibility, open-sourcing methodologies and benchmarking procedures to promote transparency. The manuscript also includes educational toy problems to enhance understanding. Additionally, this paper outlines best practices for presenting multi-fidelity-related savings in a standardized, succinct and yet thorough manner. The review concludes by examining current trends in multi-fidelity modeling, including emerging techniques, recent advancements, and promising research directions.

This document contains lectures and practical experimentations using Matlab and implementing a system which is actually correctly classifying three words (one, two and three) with the help of a very small database. To achieve this performance, it uses speech modeling specificities, powerful computer algorithms (dynamic time warping and Dijktra's algorithm) and machine learning (nearest neighbor). This document introduces also some machine learning evaluation metrics.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

北京阿比特科技有限公司