We present a new framework for modelling multivariate extremes, based on an angular-radial representation of the probability density function. Under this representation, the problem of modelling multivariate extremes is transformed to that of modelling an angular density and the tail of the radial variable, conditional on angle. Motivated by univariate theory, we assume that the tail of the conditional radial distribution converges to a generalised Pareto (GP) distribution. To simplify inference, we also assume that the angular density is continuous and finite and the GP parameter functions are continuous with angle. We refer to the resulting model as the semi-parametric angular-radial (SPAR) model for multivariate extremes. We consider the effect of the choice of polar coordinate system and introduce generalised concepts of angular-radial coordinate systems and generalised scalar angles in two dimensions. We show that under certain conditions, the choice of polar coordinate system does not affect the validity of the SPAR assumptions. However, some choices of coordinate system lead to simpler representations. In contrast, we show that the choice of margin does affect whether the model assumptions are satisfied. In particular, the use of Laplace margins results in a form of the density function for which the SPAR assumptions are satisfied for many common families of copula, with various dependence classes. We show that the SPAR model provides a more versatile framework for characterising multivariate extremes than provided by existing approaches, and that several commonly-used approaches are special cases of the SPAR model.
We propose a type-theoretic framework for describing and proving properties of quantum computations, in particular those presented as quantum circuits. Our proposal is based on an observation that, in the polymorphic type system of Coq, currying on quantum states allows us to apply quantum gates directly inside a complex circuit. By introducing a discrete notion of lens to control this currying, we are further able to separate the combinatorics of the circuit structure from the computational content of gates. We apply our development to define quantum circuits recursively from the bottom up, and prove their correctness compositionally.
We address the problem of the best uniform approximation of a continuous function on a convex domain. The approximation is by linear combinations of a finite system of functions (not necessarily Chebyshev) under arbitrary linear constraints. By modifying the concept of alternance and of the Remez iterative procedure we present a method, which demonstrates its efficiency in numerical problems. The linear rate of convergence is proved under some favourable assumptions. A special attention is paid to systems of complex exponents, Gaussian functions, lacunar algebraic and trigonometric polynomials. Applications to signal processing, linear ODE, switching dynamical systems, and to Markov-Bernstein type inequalities are considered.
Discovering a suitable neural network architecture for modeling complex dynamical systems poses a formidable challenge, often involving extensive trial and error and navigation through a high-dimensional hyper-parameter space. In this paper, we discuss a systematic approach to constructing neural architectures for modeling a subclass of dynamical systems, namely, Linear Time-Invariant (LTI) systems. We use a variant of continuous-time neural networks in which the output of each neuron evolves continuously as a solution of a first-order or second-order Ordinary Differential Equation (ODE). Instead of deriving the network architecture and parameters from data, we propose a gradient-free algorithm to compute sparse architecture and network parameters directly from the given LTI system, leveraging its properties. We bring forth a novel neural architecture paradigm featuring horizontal hidden layers and provide insights into why employing conventional neural architectures with vertical hidden layers may not be favorable. We also provide an upper bound on the numerical errors of our neural networks. Finally, we demonstrate the high accuracy of our constructed networks on three numerical examples.
Within the nonparametric diffusion model, we develop a multiple test to infer about similarity of an unknown drift $b$ to some reference drift $b_0$: At prescribed significance, we simultaneously identify those regions where violation from similiarity occurs, without a priori knowledge of their number, size and location. This test is shown to be minimax-optimal and adaptive. At the same time, the procedure is robust under small deviation from Brownian motion as the driving noise process. A detailed investigation for fractional driving noise, which is neither a semimartingale nor a Markov process, is provided for Hurst indices close to the Brownian motion case.
Parameters of differential equations are essential to characterize intrinsic behaviors of dynamic systems. Numerous methods for estimating parameters in dynamic systems are computationally and/or statistically inadequate, especially for complex systems with general-order differential operators, such as motion dynamics. This article presents Green's matching, a computationally tractable and statistically efficient two-step method, which only needs to approximate trajectories in dynamic systems but not their derivatives due to the inverse of differential operators by Green's function. This yields a statistically optimal guarantee for parameter estimation in general-order equations, a feature not shared by existing methods, and provides an efficient framework for broad statistical inferences in complex dynamic systems.
The value function plays a crucial role as a measure for the cumulative future reward an agent receives in both reinforcement learning and optimal control. It is therefore of interest to study how similar the values of neighboring states are, i.e., to investigate the continuity of the value function. We do so by providing and verifying upper bounds on the value function's modulus of continuity. Additionally, we show that the value function is always H\"older continuous under relatively weak assumptions on the underlying system and that non-differentiable value functions can be made differentiable by slightly "disturbing" the system.
We present a method for end-to-end learning of Koopman surrogate models for optimal performance in control. In contrast to previous contributions that employ standard reinforcement learning (RL) algorithms, we use a training algorithm that exploits the potential differentiability of environments based on mechanistic simulation models. We evaluate the performance of our method by comparing it to that of other controller type and training algorithm combinations on a literature known eNMPC case study. Our method exhibits superior performance on this problem, thereby constituting a promising avenue towards more capable controllers that employ dynamic surrogate models.
We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial "deflation" step to the standard generic chaining argument. The resulting tail bound is the sum of the complexity of the "deflated function class" in terms of a generalization of Talagrand's $\gamma$ functional, and the deviation of the function instance, both of which are formulated based on the natural seminorm induced by the corresponding Cram\'{e}r functions. We also provide certain approximations for the mentioned seminorm when the function class lies in a given (exponential type) Orlicz space, that can be used to make the complexity term and the deviation term more explicit.
We present a novel framework for the development of fourth-order lattice Boltzmann schemes to tackle multidimensional nonlinear systems of conservation laws. Our numerical schemes preserve two fundamental characteristics inherent in classical lattice Boltzmann methods: a local relaxation phase and a transport phase composed of elementary shifts on a Cartesian grid. Achieving fourth-order accuracy is accomplished through the composition of second-order time-symmetric basic schemes utilizing rational weights. This enables the representation of the transport phase in terms of elementary shifts. Introducing local variations in the relaxation parameter during each stage of relaxation ensures the entropic nature of the schemes. This not only enhances stability in the long-time limit but also maintains fourth-order accuracy. To validate our approach, we conduct comprehensive testing on scalar equations and systems in both one and two spatial dimensions.
Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions. Defining appropriate loss functions is therefore critical to successfully solving problems in this field. We present a survey of the most commonly used loss functions for a wide range of different applications, divided into classification, regression, ranking, sample generation and energy based modelling. Overall, we introduce 33 different loss functions and we organise them into an intuitive taxonomy. Each loss function is given a theoretical backing and we describe where it is best used. This survey aims to provide a reference of the most essential loss functions for both beginner and advanced machine learning practitioners.