Let $\mathcal{H}=(X,\mathcal{E})$ be a hypergraph. A support is a graph $Q$ on $X$ such that for each $E\in\mathcal{E}$, the subgraph of $Q$ induced on the elements in $E$ is connected. In this paper, we consider hypergraphs defined on a host graph. Given a graph $G=(V,E)$, with $c:V\to\{\mathbf{r},\mathbf{b}\}$, and a collection of connected subgraphs $\mathcal{H}$ of $G$, a primal support is a graph $Q$ on $\mathbf{b}(V)$ such that for each $H\in \mathcal{H}$, the induced subgraph $Q[\mathbf{b}(H)]$ on vertices $\mathbf{b}(H)=H\cap c^{-1}(\mathbf{b})$ is connected. A \emph{dual support} is a graph $Q^*$ on $\mathcal{H}$ s.t. for each $v\in X$, the induced subgraph $Q^*[\mathcal{H}_v]$ is connected, where $\mathcal{H}_v=\{H\in\mathcal{H}: v\in H\}$. We present sufficient conditions on the host graph and hyperedges so that the resulting support comes from a restricted family. We primarily study two classes of graphs: $(1)$ If the host graph has genus $g$ and the hypergraphs satisfy a topological condition of being \emph{cross-free}, then there is a primal and a dual support of genus at most $g$. $(2)$ If the host graph has treewidth $t$ and the hyperedges satisfy a combinatorial condition of being \emph{non-piercing}, then there exist primal and dual supports of treewidth $O(2^t)$. We show that this exponential blow-up is sometimes necessary. As an intermediate case, we also study the case when the host graph is outerplanar. Finally, we show applications of our results to packing and covering, and coloring problems on geometric hypergraphs.
An \emph{eight-partition} of a finite set of points (respectively, of a continuous mass distribution) in $\mathbb{R}^3$ consists of three planes that divide the space into $8$ octants, such that each open octant contains at most $1/8$ of the points (respectively, of the mass). In 1966, Hadwiger showed that any mass distribution in $\mathbb{R}^3$ admits an eight-partition; moreover, one can prescribe the normal direction of one of the three planes. The analogous result for finite point sets follows by a standard limit argument. We prove the following variant of this result: Any mass distribution (or point set) in $\mathbb{R}^3$ admits an eight-partition for which the intersection of two of the planes is a line with a prescribed direction. Moreover, we present an efficient algorithm for calculating an eight-partition of a set of $n$ points in~$\mathbb{R}^3$ (with prescribed normal direction of one of the planes) in time $O^{*}(n^{5/2})$.
Depth-3 circuit lower bounds and $k$-SAT algorithms are intimately related; the state-of-the-art $\Sigma^k_3$-circuit lower bound and the $k$-SAT algorithm are based on the same combinatorial theorem. In this paper we define a problem which reveals new interactions between the two. Define Enum($k$, $t$) problem as: given an $n$-variable $k$-CNF and an initial assignment $\alpha$, output all satisfying assignments at Hamming distance $t$ from $\alpha$, assuming that there are no satisfying assignments of Hamming distance less than $t$ from $\alpha$. Observe that: an upper bound $b(n, k, t)$ on the complexity of Enum($k$, $t$) implies: - Depth-3 circuits: Any $\Sigma^k_3$ circuit computing the Majority function has size at least $\binom{n}{\frac{n}{2}}/b(n, k, \frac{n}{2})$. - $k$-SAT: There exists an algorithm solving $k$-SAT in time $O(\sum_{t = 1}^{n/2}b(n, k, t))$. A simple construction shows that $b(n, k, \frac{n}{2}) \ge 2^{(1 - O(\log(k)/k))n}$. Thus, matching upper bounds would imply a $\Sigma^k_3$-circuit lower bound of $2^{\Omega(\log(k)n/k)}$ and a $k$-SAT upper bound of $2^{(1 - \Omega(\log(k)/k))n}$. The former yields an unrestricted depth-3 lower bound of $2^{\omega(\sqrt{n})}$ solving a long standing open problem, and the latter breaks the Super Strong Exponential Time Hypothesis. In this paper, we propose a randomized algorithm for Enum($k$, $t$) and introduce new ideas to analyze it. We demonstrate the power of our ideas by considering the first non-trivial instance of the problem, i.e., Enum($3$, $\frac{n}{2}$). We show that the expected running time of our algorithm is $1.598^n$, substantially improving on the trivial bound of $3^{n/2} \simeq 1.732^n$. This already improves $\Sigma^3_3$ lower bounds for Majority function to $1.251^n$. The previous bound was $1.154^n$ which follows from the work of H{\aa}stad, Jukna, and Pudl\'ak (Comput. Complex.'95).
Given a finite set, $A \subseteq \mathbb{R}^2$, and a subset, $B \subseteq A$, the \emph{MST-ratio} is the combined length of the minimum spanning trees of $B$ and $A \setminus B$ divided by the length of the minimum spanning tree of $A$. The question of the supremum, over all sets $A$, of the maximum, over all subsets $B$, is related to the Steiner ratio, and we prove this sup-max is between $2.154$ and $2.427$. Restricting ourselves to $2$-dimensional lattices, we prove that the sup-max is $2.0$, while the inf-max is $1.25$. By some margin the most difficult of these results is the upper bound for the inf-max, which we prove by showing that the hexagonal lattice cannot have MST-ratio larger than $1.25$.
A partition $\mathcal{P}$ of a weighted graph $G$ is $(\sigma,\tau,\Delta)$-sparse if every cluster has diameter at most $\Delta$, and every ball of radius $\Delta/\sigma$ intersects at most $\tau$ clusters. Similarly, $\mathcal{P}$ is $(\sigma,\tau,\Delta)$-scattering if instead for balls we require that every shortest path of length at most $\Delta/\sigma$ intersects at most $\tau$ clusters. Given a graph $G$ that admits a $(\sigma,\tau,\Delta)$-sparse partition for all $\Delta>0$, Jia et al. [STOC05] constructed a solution for the Universal Steiner Tree problem (and also Universal TSP) with stretch $O(\tau\sigma^2\log_\tau n)$. Given a graph $G$ that admits a $(\sigma,\tau,\Delta)$-scattering partition for all $\Delta>0$, we construct a solution for the Steiner Point Removal problem with stretch $O(\tau^3\sigma^3)$. We then construct sparse and scattering partitions for various different graph families, receiving many new results for the Universal Steiner Tree and Steiner Point Removal problems.
We study the problem of robust multivariate polynomial regression: let $p\colon\mathbb{R}^n\to\mathbb{R}$ be an unknown $n$-variate polynomial of degree at most $d$ in each variable. We are given as input a set of random samples $(\mathbf{x}_i,y_i) \in [-1,1]^n \times \mathbb{R}$ that are noisy versions of $(\mathbf{x}_i,p(\mathbf{x}_i))$. More precisely, each $\mathbf{x}_i$ is sampled independently from some distribution $\chi$ on $[-1,1]^n$, and for each $i$ independently, $y_i$ is arbitrary (i.e., an outlier) with probability at most $\rho < 1/2$, and otherwise satisfies $|y_i-p(\mathbf{x}_i)|\leq\sigma$. The goal is to output a polynomial $\hat{p}$, of degree at most $d$ in each variable, within an $\ell_\infty$-distance of at most $O(\sigma)$ from $p$. Kane, Karmalkar, and Price [FOCS'17] solved this problem for $n=1$. We generalize their results to the $n$-variate setting, showing an algorithm that achieves a sample complexity of $O_n(d^n\log d)$, where the hidden constant depends on $n$, if $\chi$ is the $n$-dimensional Chebyshev distribution. The sample complexity is $O_n(d^{2n}\log d)$, if the samples are drawn from the uniform distribution instead. The approximation error is guaranteed to be at most $O(\sigma)$, and the run-time depends on $\log(1/\sigma)$. In the setting where each $\mathbf{x}_i$ and $y_i$ are known up to $N$ bits of precision, the run-time's dependence on $N$ is linear. We also show that our sample complexities are optimal in terms of $d^n$. Furthermore, we show that it is possible to have the run-time be independent of $1/\sigma$, at the cost of a higher sample complexity.
We study polynomial-time approximation algorithms for (edge/vertex) Sparsest Cut and Small Set Expansion in terms of $k$, the number of edges or vertices cut in the optimal solution. Our main results are $\mathcal{O}(\text{polylog}\, k)$-approximation algorithms for various versions in this setting. Our techniques involve an extension of the notion of sample sets (Feige and Mahdian STOC'06), originally developed for small balanced cuts, to sparse cuts in general. We then show how to combine this notion of sample sets with two algorithms, one based on an existing framework of LP rounding and another new algorithm based on the cut-matching game, to get such approximation algorithms. Our cut-matching game algorithm can be viewed as a local version of the cut-matching game by Khandekar, Khot, Orecchia and Vishnoi and certifies an expansion of every vertex set of size $s$ in $\mathcal{O}(\log s)$ rounds. These techniques may be of independent interest. As corollaries of our results, we also obtain an $\mathcal{O}(\log opt)$-approximation for min-max graph partitioning, where $opt$ is the min-max value of the optimal cut, and improve the bound on the size of multicut mimicking networks computable in polynomial time.
We propose a Monte Carlo sampler from the reverse diffusion process. Unlike the practice of diffusion models, where the intermediary updates -- the score functions -- are learned with a neural network, we transform the score matching problem into a mean estimation one. By estimating the means of the regularized posterior distributions, we derive a novel Monte Carlo sampling algorithm called reverse diffusion Monte Carlo (rdMC), which is distinct from the Markov chain Monte Carlo (MCMC) methods. We determine the sample size from the error tolerance and the properties of the posterior distribution to yield an algorithm that can approximately sample the target distribution with any desired accuracy. Additionally, we demonstrate and prove under suitable conditions that sampling with rdMC can be significantly faster than that with MCMC. For multi-modal target distributions such as those in Gaussian mixture models, rdMC greatly improves over the Langevin-style MCMC sampling methods both theoretically and in practice. The proposed rdMC method offers a new perspective and solution beyond classical MCMC algorithms for the challenging complex distributions.
Recently (Elkin, Filtser, Neiman 2017) introduced the concept of a {\it terminal embedding} from one metric space $(X,d_X)$ to another $(Y,d_Y)$ with a set of designated terminals $T\subset X$. Such an embedding $f$ is said to have distortion $\rho\ge 1$ if $\rho$ is the smallest value such that there exists a constant $C>0$ satisfying \begin{equation*} \forall x\in T\ \forall q\in X,\ C d_X(x, q) \le d_Y(f(x), f(q)) \le C \rho d_X(x, q) . \end{equation*} When $X,Y$ are both Euclidean metrics with $Y$ being $m$-dimensional, recently (Narayanan, Nelson 2019), following work of (Mahabadi, Makarychev, Makarychev, Razenshteyn 2018), showed that distortion $1+\epsilon$ is achievable via such a terminal embedding with $m = O(\epsilon^{-2}\log n)$ for $n := |T|$. This generalizes the Johnson-Lindenstrauss lemma, which only preserves distances within $T$ and not to $T$ from the rest of space. The downside of prior work is that evaluating their embedding on some $q\in \mathbb{R}^d$ required solving a semidefinite program with $\Theta(n)$ constraints in~$m$ variables and thus required some superlinear $\mathrm{poly}(n)$ runtime. Our main contribution in this work is to give a new data structure for computing terminal embeddings. We show how to pre-process $T$ to obtain an almost linear-space data structure that supports computing the terminal embedding image of any $q\in\mathbb{R}^d$ in sublinear time $O^* (n^{1-\Theta(\epsilon^2)} + d)$. To accomplish this, we leverage tools developed in the context of approximate nearest neighbor search.
A subset $S$ of vertices in a graph $G$ is a secure dominating set of $G$ if $S$ is a dominating set of $G$ and, for each vertex $u \not\in S$, there is a vertex $v \in S$ such that $uv$ is an edge and $(S \setminus \{v\}) \cup \{u\}$ is also a dominating set of $G$. The secure domination number of $G$, denoted by $\gamma_{s}(G)$, is the cardinality of a smallest secure dominating sets of $G$. In this paper, we prove that for any outerplanar graph with $n \geq 4$ vertices, $\gamma_{s}(G) \geq (n+4)/5$ and the bound is tight.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.