亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A collection of graphs is \textit{nearly disjoint} if every pair of them intersects in at most one vertex. We prove that if $G_1, \dots, G_m$ are nearly disjoint graphs of maximum degree at most $D$, then the following holds. For every fixed $C$, if each vertex $v \in \bigcup_{i=1}^m V(G_i)$ is contained in at most $C$ of the graphs $G_1, \dots, G_m$, then the (list) chromatic number of $\bigcup_{i=1}^m G_i$ is at most $D + o(D)$. This result confirms a special case of a conjecture of Vu and generalizes Kahn's bound on the list chromatic index of linear uniform hypergraphs of bounded maximum degree. In fact, this result holds for the correspondence (or DP) chromatic number and thus implies a recent result of Molloy, and we derive this result from a more general list coloring result in the setting of `color degrees' that also implies a result of Reed and Sudakov.

相關內容

Stein operators allow to characterise probability distributions via differential operators. We use these characterizations to obtain a new class of point estimators for marginal parameters of strictly stationary and ergodic processes. These so-called Stein estimators satisfy the desirable classical properties such as consistency and asymptotic normality. As a consequence of the usually simple form of the operator, we obtain explicit estimators in cases where standard methods such as (pseudo-) maximum likelihood estimation require a numerical procedure to calculate the estimate. In addition, with our approach, one can choose from a large class of test functions which allows to improve significantly on the moment estimator. For several probability laws, we can determine an estimator that shows an asymptotic behaviour close to efficiency in the i.i.d.\ case. Moreover, for i.i.d. observations, we retrieve data-dependent functions that result in asymptotically efficient estimators and give a sequence of explicit Stein estimators that converge to the MLE.

A multifold $1$-perfect code ($1$-perfect code for list decoding) in any graph is a set $C$ of vertices such that every vertex of the graph is at distance not more than $1$ from exactly $\mu$ elements of $C$. In $q$-ary Hamming graphs, where $q$ is a prime power, we characterize all parameters of multifold $1$-perfect codes and all parameters of additive multifold $1$-perfect codes. In particular, we show that additive multifold $1$-perfect codes are related to special multiset generalizations of spreads, multispreads, and that multispreads of parameters corresponding to multifold $1$-perfect codes always exist. Keywords: perfect codes, multifold packing, multiple covering, list-decoding codes, additive codes, spreads, multispreads, completely regular codes, intriguing sets.

The existence of $q$-ary linear complementary pairs (LCPs) of codes with $q> 2$ has been completely characterized so far. This paper gives a characterization for the existence of binary LCPs of codes. As a result, we solve an open problem proposed by Carlet $et~al.$ (IEEE Trans. Inf. Theory 65(3): 1694-1704, 2019) and a conjecture proposed by Choi $et~al.$ (Cryptogr. Commun. 15(2): 469-486, 2023).

The objective of this article is to address the discretisation of fractured/faulted poromechanical models using 3D polyhedral meshes in order to cope with the geometrical complexity of faulted geological models. A polytopal scheme is proposed for contact-mechanics, based on a mixed formulation combining a fully discrete space and suitable reconstruction operators for the displacement field with a face-wise constant approximation of the Lagrange multiplier accounting for the surface tractions along the fracture/fault network. To ensure the inf--sup stability of the mixed formulation, a bubble-like degree of freedom is included in the discrete space of displacements (and taken into account in the reconstruction operators). It is proved that this fully discrete scheme for the displacement is equivalent to a low-order Virtual Element scheme, with a bubble enrichment of the VEM space. This $\mathbb{P}^1$-bubble VEM--$\mathbb{P}^0$ mixed discretization is combined with an Hybrid Finite Volume scheme for the Darcy flow. All together, the proposed approach is adapted to complex geometry accounting for network of planar faults/fractures including corners, tips and intersections; it leads to efficient semi-smooth Newton solvers for the contact-mechanics and preserve the dissipative properties of the fully coupled model. Our approach is investigated in terms of convergence and robustness on several 2D and 3D test cases using either analytical or numerical reference solutions both for the stand alone static contact mechanical model and the fully coupled poromechanical model.

We discuss some highlights of our computer-verified proof of the construction, given a countable transitive set-model $M$ of $\mathit{ZFC}$, of generic extensions satisfying $\mathit{ZFC}+\neg\mathit{CH}$ and $\mathit{ZFC}+\mathit{CH}$. Moreover, let $\mathcal{R}$ be the set of instances of the Axiom of Replacement. We isolated a 21-element subset $\Omega\subseteq\mathcal{R}$ and defined $\mathcal{F}:\mathcal{R}\to\mathcal{R}$ such that for every $\Phi\subseteq\mathcal{R}$ and $M$-generic $G$, $M\models \mathit{ZC} \cup \mathcal{F}\text{``}\Phi \cup \Omega$ implies $M[G]\models \mathit{ZC} \cup \Phi \cup \{ \neg \mathit{CH} \}$, where $\mathit{ZC}$ is Zermelo set theory with Choice. To achieve this, we worked in the proof assistant Isabelle, basing our development on the Isabelle/ZF library by L. Paulson and others.

We solve several first questions in the table of small parameters of completely regular (CR) codes in Hamming graphs $H(n,q)$. The most uplifting result is the existence of a $\{13,6,1;1,6,9\}$-CR code in $H(n,2)$, $n\ge 13$. We also establish the non-existence of a $\{11,4;3,6\}$-code and a $\{10,3;4,7\}$-code in $H(12,2)$ and $H(13,2)$. A partition of the complement of the quaternary Hamming code of length~$5$ into $4$-cliques is found, which can be used to construct completely regular codes with covering radius $1$ by known constructions. Additionally we discuss the parameters $\{24,21,10;1,4,12\}$ of a putative completely regular code in $H(24,2)$ and show the nonexistence of such a code in $H(8,4)$. Keywords: Hamming graph, equitable partition, completely regular code

Let $G=(V,E)$ be a connected graph. A subset $S\subset V$ is a cut of $G$ if $G-S$ is disconnected. A near triangulation is a 2-connected plane graph that has at most one face that is not a triangle. In this paper, we explore minimal cuts of 4-connected planar graphs. Our main result is that every minimal cut of a 4-connected planar graph $G$ is connected if and only if $G$ is a near-triangulation. We use this result to sketch a linear-time algorithm for finding a disconnected cut of a 4-connected planar graph.

Enumeration problems are often encountered as key subroutines in the exact computation of graph parameters such as chromatic number, treewidth, or treedepth. In the case of treedepth computation, the enumeration of inclusion-wise minimal separators plays a crucial role. However and quite surprisingly, the complexity status of this problem has not been settled since it has been posed as an open direction by Kloks and Kratsch in 1998. Recently at the PACE 2020 competition dedicated to treedepth computation, solvers have been circumventing that by listing all minimal $a$-$b$ separators and filtering out those that are not inclusion-wise minimal, at the cost of efficiency. Naturally, having an efficient algorithm for listing inclusion-wise minimal separators would drastically improve such practical algorithms. In this note, however, we show that no efficient algorithm is to be expected from an output-sensitive perspective, namely, we prove that there is no output-polynomial time algorithm for inclusion-wise minimal separators enumeration unless P = NP.

In this article, a heuristic approach is used to determined the best approximate distribution of $\dfrac{Y_1}{Y_1 + Y_2}$, given that $Y_1,Y_2$ are independent, and each of $Y_1$ and $Y$ is distributed as the $\mathcal{F}$-distribution with common denominator degrees of freedom. The proposed approximate distribution is subject to graphical comparisons and distributional tests. The proposed distribution is used to derive the distribution of the elemental regression weight $\omega_E$, where $E$ is the elemental regression set.

The dichromatic number of a digraph is the minimum size of a partition of its vertices into acyclic induced subgraphs. Given a class of digraphs $\mathcal C$, a digraph $H$ is a hero in $\mc C$ if $H$-free digraphs of $\mathcal C$ have bounded dichromatic number. In a seminal paper, Berger at al. give a simple characterization of all heroes in tournaments. In this paper, we give a simple proof that heroes in quasi-transitive oriented graphs are the same as heroes in tournaments. We also prove that it is not the case in the class of oriented multipartite graphs, disproving a conjecture of Aboulker, Charbit and Naserasr. We also give a full characterisation of heroes in oriented complete multipartite graphs up to the status of a single tournament on $6$ vertices.

北京阿比特科技有限公司