亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The objective of this article is to address the discretisation of fractured/faulted poromechanical models using 3D polyhedral meshes in order to cope with the geometrical complexity of faulted geological models. A polytopal scheme is proposed for contact-mechanics, based on a mixed formulation combining a fully discrete space and suitable reconstruction operators for the displacement field with a face-wise constant approximation of the Lagrange multiplier accounting for the surface tractions along the fracture/fault network. To ensure the inf--sup stability of the mixed formulation, a bubble-like degree of freedom is included in the discrete space of displacements (and taken into account in the reconstruction operators). It is proved that this fully discrete scheme for the displacement is equivalent to a low-order Virtual Element scheme, with a bubble enrichment of the VEM space. This $\mathbb{P}^1$-bubble VEM--$\mathbb{P}^0$ mixed discretization is combined with an Hybrid Finite Volume scheme for the Darcy flow. All together, the proposed approach is adapted to complex geometry accounting for network of planar faults/fractures including corners, tips and intersections; it leads to efficient semi-smooth Newton solvers for the contact-mechanics and preserve the dissipative properties of the fully coupled model. Our approach is investigated in terms of convergence and robustness on several 2D and 3D test cases using either analytical or numerical reference solutions both for the stand alone static contact mechanical model and the fully coupled poromechanical model.

相關內容

Using dominating sets to separate vertices of graphs is a well-studied problem in the larger domain of identification problems. In such problems, the objective is typically to separate any two vertices of a graph by their unique neighbourhoods in a suitably chosen dominating set of the graph. Such a dominating and separating set is often referred to as a \emph{code} in the literature. Depending on the types of dominating and separating sets used, various problems arise under various names in the literature. In this paper, we introduce a new problem in the same realm of identification problems whereby the code, called the \emph{open-separating dominating code}, or the \emph{OSD-code} for short, is a dominating set and uses open neighbourhoods for separating vertices. The paper studies the fundamental properties concerning the existence, hardness and minimality of OSD-codes. Due to the emergence of a close and yet difficult to establish relation of the OSD-codes with another well-studied code in the literature called the open locating dominating codes, or OLD-codes for short, we compare the two on various graph classes. Finally, we also provide an equivalent reformulation of the problem of finding OSD-codes of a graph as a covering problem in a suitable hypergraph and discuss the polyhedra associated with OSD-codes, again in relation to OLD-codes of some graph classes already studied in this context.

We present a label-free method for detecting anomalies during thermographic inspection of building envelopes. It is based on the AI-driven prediction of thermal distributions from color images. Effectively the method performs as a one-class classifier of the thermal image regions with high mismatch between the predicted and actual thermal distributions. The algorithm can learn to identify certain features as normal or anomalous by selecting the target sample used for training. We demonstrated this principle by training the algorithm with data collected at different outdoors temperature, which lead to the detection of thermal bridges. The method can be implemented to assist human professionals during routine building inspections or combined with mobile platforms for automating examination of large areas.

We propose a new class of finite element approximations to ideal compressible magnetohydrody- namic equations in smooth regime. Following variational approximations developed for fluid models in the last decade, our discretizations are built via a discrete variational principle mimicking the continuous Euler-Poincare principle, and to further exploit the geometrical structure of the prob- lem, vector fields are represented by their action as Lie derivatives on differential forms of any degree. The resulting semi-discrete approximations are shown to conserve the total mass, entropy and energy of the solutions for a wide class of finite element approximations. In addition, the divergence-free nature of the magnetic field is preserved in a pointwise sense and a time discretiza- tion is proposed, preserving those invariants and giving a reversible scheme at the fully discrete level. Numerical simulations are conducted to verify the accuracy of our approach and its ability to preserve the invariants for several test problems.

We explore a linear inhomogeneous elasticity equation with random Lam\'e parameters. The latter are parameterized by a countably infinite number of terms in separated expansions. The main aim of this work is to estimate expected values (considered as an infinite dimensional integral on the parametric space corresponding to the random coefficients) of linear functionals acting on the solution of the elasticity equation. To achieve this, the expansions of the random parameters are truncated, a high-order quasi-Monte Carlo (QMC) is combined with a sparse grid approach to approximate the high dimensional integral, and a Galerkin finite element method (FEM) is introduced to approximate the solution of the elasticity equation over the physical domain. The error estimates from (1) truncating the infinite expansion, (2) the Galerkin FEM, and (3) the QMC sparse grid quadrature rule are all studied. For this purpose, we show certain required regularity properties of the continuous solution with respect to both the parametric and physical variables. To achieve our theoretical regularity and convergence results, some reasonable assumptions on the expansions of the random coefficients are imposed. Finally, some numerical results are delivered.

In this paper, we consider the hull of an algebraic geometry code, meaning the intersection of the code and its dual. We demonstrate how codes whose hulls are algebraic geometry codes may be defined using only rational places of Kummer extensions (and Hermitian function fields in particular). Our primary tool is explicitly constructing non-special divisors of degrees $g$ and $g-1$ on certain families of function fields with many rational places, accomplished by appealing to Weierstrass semigroups. We provide explicit algebraic geometry codes with hulls of specified dimensions, producing along the way linearly complementary dual algebraic geometric codes from the Hermitian function field (among others) using only rational places and an answer to an open question posed by Ballet and Le Brigand for particular function fields. These results complement earlier work by Mesnager, Tang, and Qi that use lower-genus function fields as well as instances using places of a higher degree from Hermitian function fields to construct linearly complementary dual (LCD) codes and that of Carlet, Mesnager, Tang, Qi, and Pellikaan to provide explicit algebraic geometry codes with the LCD property rather than obtaining codes via monomial equivalences.

In pure integer linear programming it is often desirable to work with polyhedra that are full-dimensional, and it is well known that it is possible to reduce any polyhedron to a full-dimensional one in polynomial time. More precisely, using the Hermite normal form, it is possible to map a non full-dimensional polyhedron to a full-dimensional isomorphic one in a lower-dimensional space, while preserving integer vectors. In this paper, we extend the above result simultaneously in two directions. First, we consider mixed integer vectors instead of integer vectors, by leveraging on the concept of "integer reflexive generalized inverse." Second, we replace polyhedra with convex quadratic sets, which are sets obtained from polyhedra by enforcing one additional convex quadratic inequality. We study structural properties of convex quadratic sets, and utilize them to obtain polynomial time algorithms to recognize full-dimensional convex quadratic sets, and to find an affine function that maps a non full-dimensional convex quadratic set to a full-dimensional isomorphic one in a lower-dimensional space, while preserving mixed integer vectors. We showcase the applicability and the potential impact of these results by showing that they can be used to prove that mixed integer convex quadratic programming is fixed parameter tractable with parameter the number of integer variables. Our algorithm unifies and extends the known polynomial time solvability of pure integer convex quadratic programming in fixed dimension and of convex quadratic programming.

Motivated by the desire to understand stochastic algorithms for nonconvex optimization that are robust to their hyperparameter choices, we analyze a mini-batched prox-linear iterative algorithm for the problem of recovering an unknown rank-1 matrix from rank-1 Gaussian measurements corrupted by noise. We derive a deterministic recursion that predicts the error of this method and show, using a non-asymptotic framework, that this prediction is accurate for any batch-size and a large range of step-sizes. In particular, our analysis reveals that this method, though stochastic, converges linearly from a local initialization with a fixed step-size to a statistical error floor. Our analysis also exposes how the batch-size, step-size, and noise level affect the (linear) convergence rate and the eventual statistical estimation error, and we demonstrate how to use our deterministic predictions to perform hyperparameter tuning (e.g. step-size and batch-size selection) without ever running the method. On a technical level, our analysis is enabled in part by showing that the fluctuations of the empirical iterates around our deterministic predictions scale with the error of the previous iterate.

In the context of cubic splines, the authors have contributed to a recent paper dealing with the computation of nonlinear derivatives at the interior nodes so that monotonicity is enforced while keeping the order of approximation of the spline as high as possible. During the review process of that paper, one of the reviewers raised the question of whether a cubic spline interpolating monotone data could be forced to preserve monotonicity by imposing suitable values of the first derivative at the endpoints. Albeit a negative answer appears to be intuitive, we have found no results regarding this fact. In this short work we prove that the answer to that question is actually negative.

Most of the existing Mendelian randomization (MR) methods are limited by the assumption of linear causality between exposure and outcome, and the development of new non-linear MR methods is highly desirable. We introduce two-stage prediction estimation and control function estimation from econometrics to MR and extend them to non-linear causality. We give conditions for parameter identification and theoretically prove the consistency and asymptotic normality of the estimates. We compare the two methods theoretically under both linear and non-linear causality. We also extend the control function estimation to a more flexible semi-parametric framework without detailed parametric specifications of causality. Extensive simulations numerically corroborate our theoretical results. Application to UK Biobank data reveals non-linear causal relationships between sleep duration and systolic/diastolic blood pressure.

Latitude on the choice of initialisation is a shared feature between one-step extended state-space and multi-step methods. The paper focuses on lattice Boltzmann schemes, which can be interpreted as examples of both previous categories of numerical schemes. We propose a modified equation analysis of the initialisation schemes for lattice Boltzmann methods, determined by the choice of initial data. These modified equations provide guidelines to devise and analyze the initialisation in terms of order of consistency with respect to the target Cauchy problem and time smoothness of the numerical solution. In detail, the larger the number of matched terms between modified equations for initialisation and bulk methods, the smoother the obtained numerical solution. This is particularly manifest for numerical dissipation. Starting from the constraints to achieve time smoothness, which can quickly become prohibitive for they have to take the parasitic modes into consideration, we explain how the distinct lack of observability for certain lattice Boltzmann schemes -- seen as dynamical systems on a commutative ring -- can yield rather simple conditions and be easily studied as far as their initialisation is concerned. This comes from the reduced number of initialisation schemes at the fully discrete level. These theoretical results are successfully assessed on several lattice Boltzmann methods.

北京阿比特科技有限公司