亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Research and development of privacy analysis tools currently suffers from a lack of test beds for evaluation and comparison of such tools. In this work, we propose a benchmark application that implements an extensive list of privacy weaknesses based on the LINDDUN methodology. It represents a social network for patients whose architecture has first been described in an example analysis conducted by one of the LINDDUN authors. We have implemented this architecture and extended it with more privacy threats to build a test bed that enables comprehensive and independent testing of analysis tools.

相關內容

The information noise-contrastive estimation (InfoNCE) loss function provides the basis of many self-supervised deep learning methods due to its strong empirical results and theoretic motivation. Previous work suggests a supervised contrastive (SupCon) loss to extend InfoNCE to learn from available class labels. This SupCon loss has been widely-used due to reports of good empirical performance. However, in this work we suggest that the specific SupCon loss formulated by prior work has questionable theoretic justification, because it can encourage images from the same class to repel one another in the learned embedding space. This problematic behavior gets worse as the number of inputs sharing one class label increases. We propose the Supervised InfoNCE REvisited (SINCERE) loss as a remedy. SINCERE is a theoretically justified solution for a supervised extension of InfoNCE that never causes images from the same class to repel one another. We further show that minimizing our new loss is equivalent to maximizing a bound on the KL divergence between class conditional embedding distributions. We compare SINCERE and SupCon losses in terms of learning trajectories during pretraining and in ultimate linear classifier performance after finetuning. Our proposed SINCERE loss better separates embeddings from different classes during pretraining while delivering competitive accuracy.

The advent of serverless computing has ushered in notable advancements in distributed machine learning, particularly within parameter server-based architectures. Yet, the integration of serverless features within peer-to-peer (P2P) distributed networks remains largely uncharted. In this paper, we introduce SPIRT, a fault-tolerant, reliable, and secure serverless P2P ML training architecture. designed to bridge this existing gap. Capitalizing on the inherent robustness and reliability innate to P2P systems, SPIRT employs RedisAI for in-database operations, leading to an 82\% reduction in the time required for model updates and gradient averaging across a variety of models and batch sizes. This architecture showcases resilience against peer failures and adeptly manages the integration of new peers, thereby highlighting its fault-tolerant characteristics and scalability. Furthermore, SPIRT ensures secure communication between peers, enhancing the reliability of distributed machine learning tasks. Even in the face of Byzantine attacks, the system's robust aggregation algorithms maintain high levels of accuracy. These findings illuminate the promising potential of serverless architectures in P2P distributed machine learning, offering a significant stride towards the development of more efficient, scalable, and resilient applications.

The increased attention to regulating the outputs of deep generative models, driven by growing concerns about privacy and regulatory compliance, has highlighted the need for effective control over these models. This necessity arises from instances where generative models produce outputs containing undesirable, offensive, or potentially harmful content. To tackle this challenge, the concept of machine unlearning has emerged, aiming to forget specific learned information or to erase the influence of undesired data subsets from a trained model. The objective of this work is to prevent the generation of outputs containing undesired features from a pre-trained GAN where the underlying training data set is inaccessible. Our approach is inspired by a crucial observation: the parameter space of GANs exhibits meaningful directions that can be leveraged to suppress specific undesired features. However, such directions usually result in the degradation of the quality of generated samples. Our proposed method, known as 'Adapt-then-Unlearn,' excels at unlearning such undesirable features while also maintaining the quality of generated samples. This method unfolds in two stages: in the initial stage, we adapt the pre-trained GAN using negative samples provided by the user, while in the subsequent stage, we focus on unlearning the undesired feature. During the latter phase, we train the pre-trained GAN using positive samples, incorporating a repulsion regularizer. This regularizer encourages the model's parameters to be away from the parameters associated with the adapted model from the first stage while also maintaining the quality of generated samples. To the best of our knowledge, our approach stands as first method addressing unlearning in GANs. We validate the effectiveness of our method through comprehensive experiments.

Low Rank Decomposition of matrix - splitting a large matrix into a product of two smaller matrix offers a means for compression that reduces the parameters of a model without sparsification, and hence delivering more speedup on modern hardware. Moreover, unlike quantization, the compressed linear layers remain fully differentiable and all the parameters trainable, while being able to leverage the existing highly efficient kernels over floating point matrices. We study the potential to compress Large Language Models (LLMs) for monolingual Code generation via Low Rank Decomposition (LoRD) and observe that ranks for the linear layers in these models can be reduced by upto 39.58% with less than 1% increase in perplexity. We then use Low Rank Decomposition (LoRD) to compress StarCoder 16B to 13.2B parameter with no drop and to 12.3B with minimal drop in HumanEval Pass@1 score, in less than 10 minutes on a single A100. The compressed models speeds up inference by up to 22.35% with just a single line of change in code over huggingface's implementation with pytorch backend. Low Rank Decomposition (LoRD) models remain compatible with state of the art near-lossless quantization method such as SpQR, which allows leveraging further compression gains of quantization. Lastly, QLoRA over Low Rank Decomposition (LoRD) model further reduces memory requirements by as much as 21.2% over vanilla QLoRA while offering similar gains from parameter efficient fine tuning. Our work shows Low Rank Decomposition (LoRD) as a promising new paradigm for LLM compression.

The problem of deep long-tailed learning, a prevalent challenge in the realm of generic visual recognition, persists in a multitude of real-world applications. To tackle the heavily-skewed dataset issue in long-tailed classification, prior efforts have sought to augment existing deep models with the elaborate class-balancing strategies, such as class rebalancing, data augmentation, and module improvement. Despite the encouraging performance, the limited class knowledge of the tailed classes in the training dataset still bottlenecks the performance of the existing deep models. In this paper, we propose an innovative long-tailed learning paradigm that breaks the bottleneck by guiding the learning of deep networks with external prior knowledge. This is specifically achieved by devising an elaborated ``prophetic'' teacher, termed as ``Propheter'', that aims to learn the potential class distributions. The target long-tailed prediction model is then optimized under the instruction of the well-trained ``Propheter'', such that the distributions of different classes are as distinguishable as possible from each other. Experiments on eight long-tailed benchmarks across three architectures demonstrate that the proposed prophetic paradigm acts as a promising solution to the challenge of limited class knowledge in long-tailed datasets. The developed code is publicly available at \url{//github.com/tcmyxc/propheter}.

We introduce OpportunityFinder, a code-less framework for performing a variety of causal inference studies with panel data for non-expert users. In its current state, OpportunityFinder only requires users to provide raw observational data and a configuration file. A pipeline is then triggered that inspects/processes data, chooses the suitable algorithm(s) to execute the causal study. It returns the causal impact of the treatment on the configured outcome, together with sensitivity and robustness results. Causal inference is widely studied and used to estimate the downstream impact of individual's interactions with products and features. It is common that these causal studies are performed by scientists and/or economists periodically. Business stakeholders are often bottle-necked on scientist or economist bandwidth to conduct causal studies. We offer OpportunityFinder as a solution for commonly performed causal studies with four key features: (1) easy to use for both Business Analysts and Scientists, (2) abstraction of multiple algorithms under a single I/O interface, (3) support for causal impact analysis under binary treatment with panel data and (4) dynamic selection of algorithm based on scale of data.

Markerless methods for animal posture tracking have been developing recently, but frameworks and benchmarks for tracking large animal groups in 3D are still lacking. To overcome this gap in the literature, we present 3D-MuPPET, a framework to estimate and track 3D poses of up to 10 pigeons at interactive speed using multiple-views. We train a pose estimator to infer 2D keypoints and bounding boxes of multiple pigeons, then triangulate the keypoints to 3D. For correspondence matching, we first dynamically match 2D detections to global identities in the first frame, then use a 2D tracker to maintain correspondences accross views in subsequent frames. We achieve comparable accuracy to a state of the art 3D pose estimator for Root Mean Square Error (RMSE) and Percentage of Correct Keypoints (PCK). We also showcase a novel use case where our model trained with data of single pigeons provides comparable results on data containing multiple pigeons. This can simplify the domain shift to new species because annotating single animal data is less labour intensive than multi-animal data. Additionally, we benchmark the inference speed of 3D-MuPPET, with up to 10 fps in 2D and 1.5 fps in 3D, and perform quantitative tracking evaluation, which yields encouraging results. Finally, we show that 3D-MuPPET also works in natural environments without model fine-tuning on additional annotations. To the best of our knowledge we are the first to present a framework for 2D/3D posture and trajectory tracking that works in both indoor and outdoor environments.

Object-centric learning aims to represent visual data with a set of object entities (a.k.a. slots), providing structured representations that enable systematic generalization. Leveraging advanced architectures like Transformers, recent approaches have made significant progress in unsupervised object discovery. In addition, slot-based representations hold great potential for generative modeling, such as controllable image generation and object manipulation in image editing. However, current slot-based methods often produce blurry images and distorted objects, exhibiting poor generative modeling capabilities. In this paper, we focus on improving slot-to-image decoding, a crucial aspect for high-quality visual generation. We introduce SlotDiffusion -- an object-centric Latent Diffusion Model (LDM) designed for both image and video data. Thanks to the powerful modeling capacity of LDMs, SlotDiffusion surpasses previous slot models in unsupervised object segmentation and visual generation across six datasets. Furthermore, our learned object features can be utilized by existing object-centric dynamics models, improving video prediction quality and downstream temporal reasoning tasks. Finally, we demonstrate the scalability of SlotDiffusion to unconstrained real-world datasets such as PASCAL VOC and COCO, when integrated with self-supervised pre-trained image encoders.

Computational pathology uses artificial intelligence to enable precision medicine and decision support systems through the analysis of whole slide images. It has the potential to revolutionize the diagnosis and treatment of cancer. However, a major challenge to this objective is that for many specific computational pathology tasks the amount of data is inadequate for development. To address this challenge, we created Virchow, a 632 million parameter deep neural network foundation model for computational pathology. Using self-supervised learning, Virchow is trained on 1.5 million hematoxylin and eosin stained whole slide images from diverse tissue groups, which is orders of magnitude more data than previous works. When evaluated on downstream tasks including tile-level pan-cancer detection and subtyping and slide-level biomarker prediction, Virchow outperforms state-of-the-art systems both on internal datasets drawn from the same population as the pretraining data as well as external public datasets. Virchow achieves 93% balanced accuracy for pancancer tile classification, and AUCs of 0.983 for colon microsatellite instability status prediction and 0.967 for breast CDH1 status prediction. The gains in performance highlight the importance of pretraining on massive pathology image datasets, suggesting pretraining on even larger datasets could continue improving performance for many high-impact applications where limited amounts of training data are available, such as drug outcome prediction.

The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.

北京阿比特科技有限公司