The advent of serverless computing has ushered in notable advancements in distributed machine learning, particularly within parameter server-based architectures. Yet, the integration of serverless features within peer-to-peer (P2P) distributed networks remains largely uncharted. In this paper, we introduce SPIRT, a fault-tolerant, reliable, and secure serverless P2P ML training architecture. designed to bridge this existing gap. Capitalizing on the inherent robustness and reliability innate to P2P systems, SPIRT employs RedisAI for in-database operations, leading to an 82\% reduction in the time required for model updates and gradient averaging across a variety of models and batch sizes. This architecture showcases resilience against peer failures and adeptly manages the integration of new peers, thereby highlighting its fault-tolerant characteristics and scalability. Furthermore, SPIRT ensures secure communication between peers, enhancing the reliability of distributed machine learning tasks. Even in the face of Byzantine attacks, the system's robust aggregation algorithms maintain high levels of accuracy. These findings illuminate the promising potential of serverless architectures in P2P distributed machine learning, offering a significant stride towards the development of more efficient, scalable, and resilient applications.
Recent advances in computer vision (CV) and natural language processing have been driven by exploiting big data on practical applications. However, these research fields are still limited by the sheer volume, versatility, and diversity of the available datasets. CV tasks, such as image captioning, which has primarily been carried out on natural images, still struggle to produce accurate and meaningful captions on sketched images often included in scientific and technical documents. The advancement of other tasks such as 3D reconstruction from 2D images requires larger datasets with multiple viewpoints. We introduce DeepPatent2, a large-scale dataset, providing more than 2.7 million technical drawings with 132,890 object names and 22,394 viewpoints extracted from 14 years of US design patent documents. We demonstrate the usefulness of DeepPatent2 with conceptual captioning. We further provide the potential usefulness of our dataset to facilitate other research areas such as 3D image reconstruction and image retrieval.
This paper explores the integration of neural networks with logic programming, addressing the longstanding challenges of combining the generalization and learning capabilities of neural networks with the precision of symbolic logic. Traditional attempts at this integration have been hampered by difficulties in initial data acquisition, the reliability of undertrained networks, and the complexity of reusing and augmenting trained models. To overcome these issues, we introduce the COOL (Constraint Object-Oriented Logic) programming language, an innovative approach that seamlessly combines logical reasoning with neural network technologies. COOL is engineered to autonomously handle data collection, mitigating the need for user-supplied initial data. It incorporates user prompts into the coding process to reduce the risks of undertraining and enhances the interaction among models throughout their lifecycle to promote the reuse and augmentation of networks. Furthermore, the foundational principles and algorithms in COOL's design and its compilation system could provide valuable insights for future developments in programming languages and neural network architectures.
A donation-tracking system using smart contracts and blockchain technology has the potential to revolutionize the way charitable giving is tracked and managed. This article explores how smart contracts and blockchain can be used to create a transparent and secure ledger for tracking charitable donations. We discuss the limitations of traditional donation systems and how a blockchain-based system can help overcome these challenges. We describe how smart contracts work, how they can be used in donation tracking, and the benefits they offer, including automated processes, reduced transaction fees, and increased accountability. We also discuss how blockchain technology provides a decentralized and tamper-proof ledger that can increase transparency and help prevent fraud. Finally, we examine some of the challenges that must be addressed when implementing a smart contract-based donation tracking system, such as the need for technical expertise and the potential for security breaches. Overall, a donation-tracking system using smart contracts and blockchain has the potential to increase trust and accountability in the donation process, which can ultimately help ensure that donations are used for their intended purposes.
In the growing domain of scientific machine learning, in-context operator learning has shown notable potential in learning operators and solving differential equations using prompted data, during the inference stage without weight updates. However, the current model's overdependence on function data, may inadvertently overlook the invaluable human insight into the operator. To address this, we present a transformation of in-context operator learning into a multi-modal paradigm. In particular, we take inspiration from the recent success of large language models, and propose using "captions" to integrate human knowledge about the operator, expressed through natural language descriptions and equations. Also, we introduce a novel approach to train a language-model-like architecture, or directly fine-tune existing language models, for in-context operator learning. We beat the baseline on single-modal learning tasks, and also demonstrated the effectiveness of multi-modal learning in enhancing performance and reducing function data requirements. The proposed method not only significantly improves in-context operator learning, but also creates a new path for the application of language models.
Contrastive learning has emerged as a promising paradigm for 3D open-world understanding, jointly with text, image, and point cloud. In this paper, we introduce MixCon3D, which combines the complementary information between 2D images and 3D point clouds to enhance contrastive learning. With the further integration of multi-view 2D images, MixCon3D enhances the traditional tri-modal representation by offering a more accurate and comprehensive depiction of real-world 3D objects and bolstering text alignment. Additionally, we pioneer the first thorough investigation of various training recipes for the 3D contrastive learning paradigm, building a solid baseline with improved performance. Extensive experiments conducted on three representative benchmarks reveal that our method renders significant improvement over the baseline, surpassing the previous state-of-the-art performance on the challenging 1,156-category Objaverse-LVIS dataset by 5.7%. We further showcase the effectiveness of our approach in more applications, including text-to-3D retrieval and point cloud captioning. The code is available at //github.com/UCSC-VLAA/MixCon3D.
Dynamic shape computations have become critical in modern machine learning workloads, especially in emerging large language models. The success of these models has driven demand for deploying them to a diverse set of backend environments. In this paper, we present Relax, a compiler abstraction for optimizing end-to-end dynamic machine learning workloads. Relax introduces first-class symbolic shape annotations to track dynamic shape computations globally across the program. It also introduces a cross-level abstraction that encapsulates computational graphs, loop-level tensor programs, and library calls in a single representation to enable cross-level optimizations. We build an end-to-end compilation framework using the proposed approach to optimize dynamic shape models. Experimental results on large language models show that Relax delivers performance competitive with state-of-the-art hand-optimized systems across platforms and enables deployment of emerging dynamic models to a broader set of environments, including mobile phones, embedded devices, and web browsers.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.