亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work addresses the path planning problem for a group of unmanned aerial vehicles (UAVs) to maintain a desired formation during operation. Our approach formulates the problem as an optimization task by defining a set of fitness functions that not only ensure the formation but also include constraints for optimal and safe UAV operation. To optimize the fitness function and obtain a suboptimal path, we employ the teaching-learning-based optimization algorithm and then further enhance it with mechanisms such as mutation, elite strategy, and multi-subject combination. A number of simulations and experiments have been conducted to evaluate the proposed method. The results demonstrate that the algorithm successfully generates valid paths for the UAVs to fly in a triangular formation for an inspection task.

相關內容

Numerical simulations are widely used to predict the behavior of physical systems, with Bayesian approaches being particularly well suited for this purpose. However, experimental observations are necessary to calibrate certain simulator parameters for the prediction. In this work, we use a multi-output simulator to predict all its outputs, including those that have never been experimentally observed. This situation is referred to as the transposition context. To accurately quantify the discrepancy between model outputs and real data in this context, conventional methods cannot be applied, and the Bayesian calibration must be augmented by incorporating a joint model error across all outputs. To achieve this, the proposed method is to consider additional numerical input parameters within a hierarchical Bayesian model, which includes hyperparameters for the prior distribution of the calibration variables. This approach is applied on a computer code with three outputs that models the Taylor cylinder impact test with a small number of observations. The outputs are considered as the observed variables one at a time, to work with three different transposition situations. The proposed method is compared with other approaches that embed model errors to demonstrate the significance of the hierarchical formulation.

Recent work, spanning from autonomous vehicle coordination to in-space assembly, has shown the importance of learning collaborative behavior for enabling robots to achieve shared goals. A common approach for learning this cooperative behavior is to utilize the centralized-training decentralized-execution paradigm. However, this approach also introduces a new challenge: how do we evaluate the contributions of each agent's actions to the overall success or failure of the team. This credit assignment problem has remained open, and has been extensively studied in the Multi-Agent Reinforcement Learning literature. In fact, humans manually inspecting agent behavior often generate better credit evaluations than existing methods. We combine this observation with recent works which show Large Language Models demonstrate human-level performance at many pattern recognition tasks. Our key idea is to reformulate credit assignment to the two pattern recognition problems of sequence improvement and attribution, which motivates our novel LLM-MCA method. Our approach utilizes a centralized LLM reward-critic which numerically decomposes the environment reward based on the individualized contribution of each agent in the scenario. We then update the agents' policy networks based on this feedback. We also propose an extension LLM-TACA where our LLM critic performs explicit task assignment by passing an intermediary goal directly to each agent policy in the scenario. Both our methods far outperform the state-of-the-art on a variety of benchmarks, including Level-Based Foraging, Robotic Warehouse, and our new Spaceworld benchmark which incorporates collision-related safety constraints. As an artifact of our methods, we generate large trajectory datasets with each timestep annotated with per-agent reward information, as sampled from our LLM critics.

This article considers the problem of conflict-free distribution of point-sized agents on a circular periphery encompassing all agents. The two key elements of the proposed policy include the construction of a set of convex layers (nested convex polygons) using the initial positions of the agents, and a novel search space region for each of the agents. The search space for an agent on a convex layer is defined as the region enclosed between the lines passing through the agent's position and normal to its supporting edges. Guaranteeing collision-free paths, a goal assignment policy designates a unique goal position within the search space of an agent at the initial time itself, requiring no further computation thereafter. In contrast to the existing literature, this work presents a one-shot, collision-free solution to the circular distribution problem by utilizing only the initial positions of the agents. Illustrative examples demonstrate the effectiveness of the proposed policy.

Conversational recommender systems (CRS) involve both recommendation and dialogue tasks, which makes their evaluation a unique challenge. Although past research has analyzed various factors that may affect user satisfaction with CRS interactions from the perspective of user studies, few evaluation metrics for CRS have been proposed. Recent studies have shown that LLMs can align with human preferences, and several LLM-based text quality evaluation measures have been introduced. However, the application of LLMs in CRS evaluation remains relatively limited. To address this research gap and advance the development of user-centric conversational recommender systems, this study proposes an automated LLM-based CRS evaluation framework, building upon existing research in human-computer interaction and psychology. The framework evaluates CRS from four dimensions: dialogue behavior, language expression, recommendation items, and response content. We use this framework to evaluate four different conversational recommender systems.

Perception-based navigation systems are useful for unmanned ground vehicle (UGV) navigation in complex terrains, where traditional depth-based navigation schemes are insufficient. However, these data-driven methods are highly dependent on their training data and can fail in surprising and dramatic ways with little warning. To ensure the safety of the vehicle and the surrounding environment, it is imperative that the navigation system is able to recognize the predictive uncertainty of the perception model and respond safely and effectively in the face of uncertainty. In an effort to enable safe navigation under perception uncertainty, we develop a probabilistic and reconstruction-based competency estimation (PaRCE) method to estimate the model's level of familiarity with an input image as a whole and with specific regions in the image. We find that the overall competency score can correctly predict correctly classified, misclassified, and out-of-distribution (OOD) samples. We also confirm that the regional competency maps can accurately distinguish between familiar and unfamiliar regions across images. We then use this competency information to develop a planning and control scheme that enables effective navigation while maintaining a low probability of error. We find that the competency-aware scheme greatly reduces the number of collisions with unfamiliar obstacles, compared to a baseline controller with no competency awareness. Furthermore, the regional competency information is very valuable in enabling efficient navigation.

Despite the fundamental importance of clustering, to this day, much of the relevant research is still based on ambiguous foundations, leading to an unclear understanding of whether or how the various clustering methods are connected with each other. In this work, we provide an additional stepping stone towards resolving such ambiguities by presenting a general clustering framework that subsumes a series of seemingly disparate clustering methods, including various methods belonging to the widely popular spectral clustering framework. In fact, the generality of the proposed framework is additionally capable of shedding light to the largely unexplored area of multi-view graphs where each view may have differently clustered nodes. In turn, we propose GenClus: a method that is simultaneously an instance of this framework and a generalization of spectral clustering, while also being closely related to k-means as well. This results in a principled alternative to the few existing methods studying this special type of multi-view graphs. Then, we conduct in-depth experiments, which demonstrate that GenClus is more computationally efficient than existing methods, while also attaining similar or better clustering performance. Lastly, a qualitative real-world case-study further demonstrates the ability of GenClus to produce meaningful clusterings.

Reconfigurable intelligent surface (RIS) is a two-dimensional periodic structure integrated with a large number of reflective elements, which can manipulate electromagnetic waves in a digital way, offering great potentials for wireless communication and radar detection applications. However, conventional RIS designs highly rely on extensive full-wave EM simulations that are extremely time-consuming. To address this challenge, we propose a machine-learning-assisted approach for efficient RIS design. An accurate and fast model to predict the reflection coefficient of RIS element is developed by combining a multi-layer perceptron neural network (MLP) and a dual-port network, which can significantly reduce tedious EM simulations in the network training. A RIS has been practically designed based on the proposed method. To verify the proposed method, the RIS has also been fabricated and measured. The experimental results are in good agreement with the simulation results, which validates the efficacy of the proposed method in RIS design.

We examine a two-layered hierarchical coded caching problem, a configuration addressed in existing research. This involves a server connected to $K_1$ mirrors, each of which serves $K_2$ users. The mirrors and the users are equipped with caches of size $M_1$ and $M_2$, respectively. We propose a hierarchical coded caching scheme with coded placements that outperforms existing schemes. To ensure a fair comparison, we introduce the notion of composite rate, defined as $\overline{R} = R_1 + K_1 R_2$, where $R_1$ is the rate from the server to mirrors and $R_2$ is the rate from mirrors to users. The composite rate has not been discussed before in the literature and is pertinent when mirrors transmit with different carrier frequencies. For the proposed scheme, we show a trade-off between the global memory $\overline{M}=K_1M_1+K_1K_2M_2$ of the system and the composite rate and compare with the existing schemes. Additionally, we conduct this comparative analysis by plotting $R_1$ + $R_2$ against global memory, which is particularly beneficial for systems wherein each mirror can utilize the same carrier frequency, given their significant spatial separation. Additionally, we propose an optimized scheme for the specific case of a single mirror, showing improved performance in this scenario.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司