亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Labelling of data for supervised learning can be costly and time-consuming and the risk of incorporating label noise in large data sets is imminent. If training a flexible discriminative model using a strictly proper loss, such noise will inevitably shift the solution towards the conditional distribution over noisy labels. Nevertheless, while deep neural networks have proved capable of fitting random labels, regularisation and the use of robust loss functions empirically mitigate the effects of label noise. However, such observations concern robustness in accuracy, which is insufficient if reliable uncertainty quantification is critical. We demonstrate this by analysing the properties of the conditional distribution over noisy labels for an input-dependent noise model. In addition, we evaluate the set of robust loss functions characterised by an overlap in asymptotic risk minimisers under the clean and noisy data distributions. We find that strictly proper and robust loss functions both offer asymptotic robustness in accuracy, but neither guarantee that the resulting model is calibrated. Moreover, overfitting is an issue in practice. With these results, we aim to explain inherent robustness of algorithms to label noise and to give guidance in the development of new noise-robust algorithms.

相關內容

We provide a general framework for studying recurrent neural networks (RNNs) trained by injecting noise into hidden states. Specifically, we consider RNNs that can be viewed as discretizations of stochastic differential equations driven by input data. This framework allows us to study the implicit regularization effect of general noise injection schemes by deriving an approximate explicit regularizer in the small noise regime. We find that, under reasonable assumptions, this implicit regularization promotes flatter minima; it biases towards models with more stable dynamics; and, in classification tasks, it favors models with larger classification margin. Sufficient conditions for global stability are obtained, highlighting the phenomenon of stochastic stabilization, where noise injection can improve stability during training. Our theory is supported by empirical results which demonstrate that the RNNs have improved robustness with respect to various input perturbations.

Data from both a randomized trial and an observational study are sometimes simultaneously available for evaluating the effect of an intervention. The randomized data typically allows for reliable estimation of average treatment effects but may be limited in sample size and patient heterogeneity for estimating conditional average treatment effects for a broad range of patients. Estimates from the observational study can potentially compensate for these limitations, but there may be concerns about whether confounding and treatment effect heterogeneity have been adequately addressed. We propose an approach for combining conditional treatment effect estimators from each source such that it aggressively weights toward the randomized estimator when bias in the observational estimator is detected. This allows the combination to be consistent for a conditional causal effect, regardless of whether assumptions required for consistent estimation in the observational study are satisfied. When the bias is negligible, the estimators from each source are combined for optimal efficiency. We show the problem can be formulated as a penalized least squares problem and consider its asymptotic properties. Simulations demonstrate the robustness and efficiency of the method in finite samples, in scenarios with bias or no bias in the observational estimator. We illustrate the method by estimating the effects of hormone replacement therapy on the risk of developing coronary heart disease in data from the Women's Health Initiative.

Overfitting data is a well-known phenomenon related with the generation of a model that mimics too closely (or exactly) a particular instance of data, and may therefore fail to predict future observations reliably. In practice, this behaviour is controlled by various--sometimes heuristics--regularization techniques, which are motivated by developing upper bounds to the generalization error. In this work, we study the generalization error of classifiers relying on stochastic encodings trained on the cross-entropy loss, which is often used in deep learning for classification problems. We derive bounds to the generalization error showing that there exists a regime where the generalization error is bounded by the mutual information between input features and the corresponding representations in the latent space, which are randomly generated according to the encoding distribution. Our bounds provide an information-theoretic understanding of generalization in the so-called class of variational classifiers, which are regularized by a Kullback-Leibler (KL) divergence term. These results give theoretical grounds for the highly popular KL term in variational inference methods that was already recognized to act effectively as a regularization penalty. We further observe connections with well studied notions such as Variational Autoencoders, Information Dropout, Information Bottleneck and Boltzmann Machines. Finally, we perform numerical experiments on MNIST and CIFAR datasets and show that mutual information is indeed highly representative of the behaviour of the generalization error.

Audio classification has seen great progress with the increasing availability of large-scale datasets. These large datasets, however, are often only partially labeled as collecting full annotations is a tedious and expensive process. This paper presents two semi-supervised methods capable of learning with missing labels and evaluates them on two publicly available, partially labeled datasets. The first method relies on label enhancement by a two-stage teacher-student learning process, while the second method utilizes the mean teacher semi-supervised learning algorithm. Our results demonstrate the impact of improperly handling missing labels and compare the benefits of using different strategies leveraging data with few labels. Methods capable of learning with partially labeled data have the potential to improve models for audio classification by utilizing even larger amounts of data without the need for complete annotations.

Mainstream approaches for unsupervised domain adaptation (UDA) learn domain-invariant representations to narrow the domain shift. Recently, self-training has been gaining momentum in UDA, which exploits unlabeled target data by training with target pseudo-labels. However, as corroborated in this work, under distributional shift in UDA, the pseudo-labels can be unreliable in terms of their large discrepancy from target ground truth. Thereby, we propose Cycle Self-Training (CST), a principled self-training algorithm that explicitly enforces pseudo-labels to generalize across domains. CST cycles between a forward step and a reverse step until convergence. In the forward step, CST generates target pseudo-labels with a source-trained classifier. In the reverse step, CST trains a target classifier using target pseudo-labels, and then updates the shared representations to make the target classifier perform well on the source data. We introduce the Tsallis entropy as a confidence-friendly regularization to improve the quality of target pseudo-labels. We analyze CST theoretically under realistic assumptions, and provide hard cases where CST recovers target ground truth, while both invariant feature learning and vanilla self-training fail. Empirical results indicate that CST significantly improves over the state-of-the-arts on visual recognition and sentiment analysis benchmarks.

Self-training algorithms, which train a model to fit pseudolabels predicted by another previously-learned model, have been very successful for learning with unlabeled data using neural networks. However, the current theoretical understanding of self-training only applies to linear models. This work provides a unified theoretical analysis of self-training with deep networks for semi-supervised learning, unsupervised domain adaptation, and unsupervised learning. At the core of our analysis is a simple but realistic ``expansion'' assumption, which states that a low-probability subset of the data must expand to a neighborhood with large probability relative to the subset. We also assume that neighborhoods of examples in different classes have minimal overlap. We prove that under these assumptions, the minimizers of population objectives based on self-training and input-consistency regularization will achieve high accuracy with respect to ground-truth labels. By using off-the-shelf generalization bounds, we immediately convert this result to sample complexity guarantees for neural nets that are polynomial in the margin and Lipschitzness. Our results help explain the empirical successes of recently proposed self-training algorithms which use input consistency regularization.

We propose a novel framework to perform classification via deep learning in the presence of noisy annotations. When trained on noisy labels, deep neural networks have been observed to first fit the training data with clean labels during an "early learning" phase, before eventually memorizing the examples with false labels. We prove that early learning and memorization are fundamental phenomena in high-dimensional classification tasks, even in simple linear models, and give a theoretical explanation in this setting. Motivated by these findings, we develop a new technique for noisy classification tasks, which exploits the progress of the early learning phase. In contrast with existing approaches, which use the model output during early learning to detect the examples with clean labels, and either ignore or attempt to correct the false labels, we take a different route and instead capitalize on early learning via regularization. There are two key elements to our approach. First, we leverage semi-supervised learning techniques to produce target probabilities based on the model outputs. Second, we design a regularization term that steers the model towards these targets, implicitly preventing memorization of the false labels. The resulting framework is shown to provide robustness to noisy annotations on several standard benchmarks and real-world datasets, where it achieves results comparable to the state of the art.

This work presents a new strategy for multi-class classification that requires no class-specific labels, but instead leverages pairwise similarity between examples, which is a weaker form of annotation. The proposed method, meta classification learning, optimizes a binary classifier for pairwise similarity prediction and through this process learns a multi-class classifier as a submodule. We formulate this approach, present a probabilistic graphical model for it, and derive a surprisingly simple loss function that can be used to learn neural network-based models. We then demonstrate that this same framework generalizes to the supervised, unsupervised cross-task, and semi-supervised settings. Our method is evaluated against state of the art in all three learning paradigms and shows a superior or comparable accuracy, providing evidence that learning multi-class classification without multi-class labels is a viable learning option.

Predictive models can fail to generalize from training to deployment environments because of dataset shift, posing a threat to model reliability and the safety of downstream decisions made in practice. Instead of using samples from the target distribution to reactively correct dataset shift, we use graphical knowledge of the causal mechanisms relating variables in a prediction problem to proactively remove relationships that do not generalize across environments, even when these relationships may depend on unobserved variables (violations of the "no unobserved confounders" assumption). To accomplish this, we identify variables with unstable paths of statistical influence and remove them from the model. We also augment the causal graph with latent counterfactual variables that isolate unstable paths of statistical influence, allowing us to retain stable paths that would otherwise be removed. Our experiments demonstrate that models that remove vulnerable variables and use estimates of the latent variables transfer better, often outperforming in the target domain despite some accuracy loss in the training domain.

During recent years, active learning has evolved into a popular paradigm for utilizing user's feedback to improve accuracy of learning algorithms. Active learning works by selecting the most informative sample among unlabeled data and querying the label of that point from user. Many different methods such as uncertainty sampling and minimum risk sampling have been utilized to select the most informative sample in active learning. Although many active learning algorithms have been proposed so far, most of them work with binary or multi-class classification problems and therefore can not be applied to problems in which only samples from one class as well as a set of unlabeled data are available. Such problems arise in many real-world situations and are known as the problem of learning from positive and unlabeled data. In this paper we propose an active learning algorithm that can work when only samples of one class as well as a set of unlabelled data are available. Our method works by separately estimating probability desnity of positive and unlabeled points and then computing expected value of informativeness to get rid of a hyper-parameter and have a better measure of informativeness./ Experiments and empirical analysis show promising results compared to other similar methods.

北京阿比特科技有限公司