亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Relational information between different types of entities is often modelled by a multilayer network (MLN) -- a network with subnetworks represented by layers. The layers of an MLN can be arranged in different ways in a visual representation, however, the impact of the arrangement on the readability of the network is an open question. Therefore, we studied this impact for several commonly occurring tasks related to MLN analysis. Additionally, layer arrangements with a dimensionality beyond 2D, which are common in this scenario, motivate the use of stereoscopic displays. We ran a human subject study utilising a Virtual Reality headset to evaluate 2D, 2.5D, and 3D layer arrangements. The study employs six analysis tasks that cover the spectrum of an MLN task taxonomy, from path finding and pattern identification to comparisons between and across layers. We found no clear overall winner. However, we explore the task-to-arrangement space and derive empirical-based recommendations on the effective use of 2D, 2.5D, and 3D layer arrangements for MLNs.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Text-attributed graphs (TAGs) are prevalent on the web and research over TAGs such as citation networks, e-commerce networks and social networks has attracted considerable attention in the web community. Recently, large language models (LLMs) have demonstrated exceptional capabilities across a wide range of tasks. However, the existing works focus on harnessing the potential of LLMs solely relying on prompts to convey graph structure information to LLMs, thus suffering from insufficient understanding of the complex structural relationships within TAGs. To address this problem, in this paper we present the Disentangled Graph-Text Learner (DGTL) model, which is able to enhance the reasoning and predicting capabilities of LLMs for TAGs. Our proposed DGTL model incorporates graph structure information through tailored disentangled graph neural network (GNN) layers, enabling LLMs to capture the intricate relationships hidden in text-attributed graphs from multiple structural factors. Furthermore, DGTL operates with frozen pre-trained LLMs, reducing computational costs and allowing much more flexibility in combining with different LLM models. Experimental evaluations demonstrate the effectiveness of the proposed DGTL model on achieving superior or comparable performance over state-of-the-art baselines. Additionally, we also demonstrate that our DGTL model can offer natural language explanations for predictions, thereby significantly enhancing model interpretability.

Safe deployment of time-series classifiers for real-world applications relies on the ability to detect the data which is not generated from the same distribution as training data. This task is referred to as out-of-distribution (OOD) detection. We consider the novel problem of OOD detection for the time-series domain. We discuss the unique challenges posed by time-series data and explain why prior methods from the image domain will perform poorly. Motivated by these challenges, this paper proposes a novel {\em Seasonal Ratio Scoring (SRS)} approach. SRS consists of three key algorithmic steps. First, each input is decomposed into class-wise semantic component and remainder. Second, this decomposition is employed to estimate the class-wise conditional likelihoods of the input and remainder using deep generative models. The seasonal ratio score is computed from these estimates. Third, a threshold interval is identified from the in-distribution data to detect OOD examples. Experiments on diverse real-world benchmarks demonstrate that the SRS method is well-suited for time-series OOD detection when compared to baseline methods. Open-source code for SRS method is provided at //github.com/tahabelkhouja/SRS

Future wireless communication networks are in a position to move beyond data-centric, device-oriented connectivity and offer intelligent, immersive experiences based on task-oriented connections, especially in the context of the thriving development of pre-trained foundation models (PFM) and the evolving vision of 6G native artificial intelligence (AI). Therefore, redefining modes of collaboration between devices and servers and constructing native intelligence libraries become critically important in 6G. In this paper, we analyze the challenges of achieving 6G native AI from the perspectives of data, intelligence, and networks. Then, we propose a 6G native AI framework based on foundation models, provide a customization approach for intent-aware PFM, present a construction of a task-oriented AI toolkit, and outline a novel cloud-edge-end collaboration paradigm. As a practical use case, we apply this framework for orchestration, achieving the maximum sum rate within a wireless communication system, and presenting preliminary evaluation results. Finally, we outline research directions for achieving native AI in 6G.

The knowledge of channel covariance matrices is crucial to the design of intelligent reflecting surface (IRS) assisted communication. However, channel covariance matrices may change suddenly in practice. This letter focuses on the detection of the above change in IRS-assisted communication. Specifically, we consider the uplink communication system consisting of a single-antenna user (UE), an IRS, and a multi-antenna base station (BS). We first categorize two types of channel covariance matrix changes based on their impact on system design: Type I change, which denotes the change in the BS receive covariance matrix, and Type II change, which denotes the change in the IRS transmit/receive covariance matrix. Secondly, a powerful method is proposed to detect whether a Type I change occurs, a Type II change occurs, or no change occurs. The effectiveness of our proposed scheme is verified by numerical results.

A network intrusion usually involves a number of network locations. Data flow (including the data generated by intrusion behaviors) among these locations (usually represented by IP addresses) naturally forms a graph. Thus, graph neural networks (GNNs) have been used in the construction of intrusion detection models in recent years since they have an excellent ability to capture graph topological features of intrusion data flow. However, existing GNN models treat node mean aggregation equally in node information aggregation. In reality, the correlations of nodes and their neighbors as well as the linked edges are different. Assigning higher weights to nodes and edges with high similarity can highlight the correlation among them, which will enhance the accuracy and expressiveness of the model. To this end, this paper proposes novel Edge-Directed Graph Multi-Head Attention Networks (EDGMAT) for network intrusion detection. The proposed EDGMAT model introduces a multi-head attention mechanism into the intrusion detection model. Additional weight learning is realized through the combination of a multi-head attention mechanism and edge features. Weighted aggregation makes better use of the relationship between different network traffic data. Experimental results on four recent NIDS benchmark datasets show that the performance of EDGMAT in terms of weighted F1-Score is significantly better than that of four state-of-the-art models in multi-class detection tasks.

Part-prototype networks (e.g., ProtoPNet, ProtoTree, and ProtoPool) have attracted broad research interest for their intrinsic interpretability and comparable accuracy to non-interpretable counterparts. However, recent works find that the interpretability from prototypes is fragile, due to the semantic gap between the similarities in the feature space and that in the input space. In this work, we strive to address this challenge by making the first attempt to quantitatively and objectively evaluate the interpretability of the part-prototype networks. Specifically, we propose two evaluation metrics, termed as consistency score and stability score, to evaluate the explanation consistency across images and the explanation robustness against perturbations, respectively, both of which are essential for explanations taken into practice. Furthermore, we propose an elaborated part-prototype network with a shallow-deep feature alignment (SDFA) module and a score aggregation (SA) module to improve the interpretability of prototypes. We conduct systematical evaluation experiments and provide substantial discussions to uncover the interpretability of existing part-prototype networks. Experiments on three benchmarks across nine architectures demonstrate that our model achieves significantly superior performance to the state of the art, in both the accuracy and interpretability. Our code is available at //github.com/hqhQAQ/EvalProtoPNet.

Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.

Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.

Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.

In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. The obvious existence of such complex relationships in many real-world networks naturaly motivates the problem of learning with hypergraphs. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems. We demonstrate HyperGCN's effectiveness through detailed experimentation on real-world hypergraphs.

北京阿比特科技有限公司