We consider an Anonymous Multi-Agent Path-Finding (AMAPF) problem where the set of agents is confined to a graph, a set of goal vertices is given and each of these vertices has to be reached by some agent. The problem is to find an assignment of the goals to the agents as well as the collision-free paths, and we are interested in finding the solution with the optimal makespan. A well-established approach to solve this problem is to reduce it to a special type of a graph search problem, i.e. to the problem of finding a maximum flow on an auxiliary graph induced by the input one. The size of the former graph may be very large and the search on it may become a bottleneck. To this end, we suggest a specific search algorithm that leverages the idea of exploring the search space not through considering separate search states but rather bulks of them simultaneously. That is, we implicitly compress, store and expand bulks of the search states as single states, which results in high reduction in runtime and memory. Empirically, the resultant AMAPF solver demonstrates superior performance compared to the state-of-the-art competitor and is able to solve all publicly available MAPF instances from the well-known MovingAI benchmark in less than 30 seconds.
We study a Bayesian persuasion problem where a sender wants to persuade a receiver to take a binary action, such as purchasing a product. The sender is informed about the (binary) state of the world, such as whether the quality of the product is high or low, but only has limited information about the receiver's beliefs and utilities. Motivated by customer surveys, user studies, and recent advances in generative AI, we allow the sender to learn more about the receiver by querying an oracle that simulates the receiver's behavior. After a fixed number of queries, the sender commits to a messaging policy and the receiver takes the action that maximizes her expected utility given the message she receives. We characterize the sender's optimal messaging policy given any distribution over receiver types. We then design a polynomial-time querying algorithm that optimizes the sender's expected utility in this Bayesian persuasion game. We also consider approximate oracles, more general query structures, and costly queries.
Active object reconstruction using autonomous robots is gaining great interest. A primary goal in this task is to maximize the information of the object to be reconstructed, given limited on-board resources. Previous view planning methods exhibit inefficiency since they rely on an iterative paradigm based on explicit representations, consisting of (1) planning a path to the next-best view only; and (2) requiring a considerable number of less-gain views in terms of surface coverage. To address these limitations, we propose to integrate implicit representations into the One-Shot View Planning (OSVP). The key idea behind our approach is to use implicit representations to obtain the small missing surface areas instead of observing them with extra views. Therefore, we design a deep neural network, named OSVP, to directly predict a set of views given a dense point cloud refined from an initial sparse observation. To train our OSVP network, we generate supervision labels using dense point clouds refined by implicit representations and set covering optimization problems. Simulated experiments show that our method achieves sufficient reconstruction quality, outperforming several baselines under limited view and movement budgets. We further demonstrate the applicability of our approach in a real-world object reconstruction scenario.
A fundamental problem in robust learning is asymmetry: a learner needs to correctly classify every one of exponentially-many perturbations that an adversary might make to a test-time natural example. In contrast, the attacker only needs to find one successful perturbation. Xiang et al.[2022] proposed an algorithm that in the context of patch attacks for image classification, reduces the effective number of perturbations from an exponential to a polynomial number of perturbations and learns using an ERM oracle. However, to achieve its guarantee, their algorithm requires the natural examples to be robustly realizable. This prompts the natural question; can we extend their approach to the non-robustly-realizable case where there is no classifier with zero robust error? Our first contribution is to answer this question affirmatively by reducing this problem to a setting in which an algorithm proposed by Feige et al.[2015] can be applied, and in the process extend their guarantees. Next, we extend our results to a multi-group setting and introduce a novel agnostic multi-robust learning problem where the goal is to learn a predictor that achieves low robust loss on a (potentially) rich collection of subgroups.
The prior drift is crucial in Continual Test-Time Adaptation (CTTA) methods that only use unlabeled test data, as it can cause significant error propagation. In this paper, we introduce VCoTTA, a variational Bayesian approach to measure uncertainties in CTTA. At the source stage, we transform a pre-trained deterministic model into a Bayesian Neural Network (BNN) via a variational warm-up strategy, injecting uncertainties into the model. During the testing time, we employ a mean-teacher update strategy using variational inference for the student model and exponential moving average for the teacher model. Our novel approach updates the student model by combining priors from both the source and teacher models. The evidence lower bound is formulated as the cross-entropy between the student and teacher models, along with the Kullback-Leibler (KL) divergence of the prior mixture. Experimental results on three datasets demonstrate the method's effectiveness in mitigating prior drift within the CTTA framework.
We present a distributed quasi-Newton (DQN) method, which enables a group of agents to compute an optimal solution of a separable multi-agent optimization problem locally using an approximation of the curvature of the aggregate objective function. Each agent computes a descent direction from its local estimate of the aggregate Hessian, obtained from quasi-Newton approximation schemes using the gradient of its local objective function. Moreover, we introduce a distributed quasi-Newton method for equality-constrained optimization (EC-DQN), where each agent takes Karush-Kuhn-Tucker-like update steps to compute an optimal solution. In our algorithms, each agent communicates with its one-hop neighbors over a peer-to-peer communication network to compute a common solution. We prove convergence of our algorithms to a stationary point of the optimization problem. In addition, we demonstrate the competitive empirical convergence of our algorithm in both well-conditioned and ill-conditioned optimization problems, in terms of the computation time and communication cost incurred by each agent for convergence, compared to existing distributed first-order and second-order methods. Particularly, in ill-conditioned problems, our algorithms achieve a faster computation time for convergence, while requiring a lower communication cost, across a range of communication networks with different degrees of connectedness, by leveraging information on the curvature of the problem.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.