Automatic crash bucketing is a crucial phase in the software development process for efficiently triaging bug reports. It generally consists in grouping similar reports through clustering techniques. However, with real-time streaming bug collection, systems are needed to quickly answer the question: What are the most similar bugs to a new one?, that is, efficiently find near-duplicates. It is thus natural to consider nearest neighbors search to tackle this problem and especially the well-known locality-sensitive hashing (LSH) to deal with large datasets due to its sublinear performance and theoretical guarantees on the similarity search accuracy. Surprisingly, LSH has not been considered in the crash bucketing literature. It is indeed not trivial to derive hash functions that satisfy the so-called locality-sensitive property for the most advanced crash bucketing metrics. Consequently, we study in this paper how to leverage LSH for this task. To be able to consider the most relevant metrics used in the literature, we introduce DeepLSH, a Siamese DNN architecture with an original loss function, that perfectly approximates the locality-sensitivity property even for Jaccard and Cosine metrics for which exact LSH solutions exist. We support this claim with a series of experiments on an original dataset, which we make available.
Quantum computing has the potential to solve problems that are intractable for classical systems, yet the high error rates in contemporary quantum devices often exceed tolerable limits for useful algorithm execution. Quantum Error Correction (QEC) mitigates this by employing redundancy, distributing quantum information across multiple data qubits and utilizing syndrome qubits to monitor their states for errors. The syndromes are subsequently interpreted by a decoding algorithm to identify and correct errors in the data qubits. This task is complex due to the multiplicity of error sources affecting both data and syndrome qubits as well as syndrome extraction operations. Additionally, identical syndromes can emanate from different error sources, necessitating a decoding algorithm that evaluates syndromes collectively. Although machine learning (ML) decoders such as multi-layer perceptrons (MLPs) and convolutional neural networks (CNNs) have been proposed, they often focus on local syndrome regions and require retraining when adjusting for different code distances. We introduce a transformer-based QEC decoder which employs self-attention to achieve a global receptive field across all input syndromes. It incorporates a mixed loss training approach, combining both local physical error and global parity label losses. Moreover, the transformer architecture's inherent adaptability to variable-length inputs allows for efficient transfer learning, enabling the decoder to adapt to varying code distances without retraining. Evaluation on six code distances and ten different error configurations demonstrates that our model consistently outperforms non-ML decoders, such as Union Find (UF) and Minimum Weight Perfect Matching (MWPM), and other ML decoders, thereby achieving best logical error rates. Moreover, the transfer learning can save over 10x of training cost.
A donation-tracking system using smart contracts and blockchain technology has the potential to revolutionize the way charitable giving is tracked and managed. This article explores how smart contracts and blockchain can be used to create a transparent and secure ledger for tracking charitable donations. We discuss the limitations of traditional donation systems and how a blockchain-based system can help overcome these challenges. We describe how smart contracts work, how they can be used in donation tracking, and the benefits they offer, including automated processes, reduced transaction fees, and increased accountability. We also discuss how blockchain technology provides a decentralized and tamper-proof ledger that can increase transparency and help prevent fraud. Finally, we examine some of the challenges that must be addressed when implementing a smart contract-based donation tracking system, such as the need for technical expertise and the potential for security breaches. Overall, a donation-tracking system using smart contracts and blockchain has the potential to increase trust and accountability in the donation process, which can ultimately help ensure that donations are used for their intended purposes.
As enterprises increasingly migrate their applications to the cloud, the demand for secure and cost-effective Wide Area Networking (WAN) solutions for data transmission between branches and data centers grows. Among these solutions, Software-Defined Wide Area Networking (SD-WAN) has emerged as a promising approach. However, existing SD-WAN implementations largely rely on IPSec tunnels for data encryption between edge routers, resulting in drawbacks such as extended setup times and limited throughput. Additionally, the SD-WAN control plane rarely takes both latency and monetary cost into consideration when determining routes between nodes, resulting in unsatisfactory Quality of Service (QoS). We propose WirePlanner, an SD-WAN solution that employs a novel algorithm for path discovery, optimizing both latency and cost, and configures WireGuard tunnels for secure and efficient data transmission. WirePlanner considers two payment methods: Pay-As-You-Go, where users pay for a fixed amount of bandwidth over a certain duration, and Pay-For-Data-Transfer, where users pay for the volume of transmitted data. Given an underlay topology of edge routers and a user-defined budget constraint, WirePlanner identifies a path between nodes that minimizes latency and remains within the budget, while utilizing WireGuard for secure data transmission.
Spiking neural networks and neuromorphic hardware platforms that emulate neural dynamics are slowly gaining momentum and entering main-stream usage. Despite a well-established mathematical foundation for neural dynamics, the implementation details vary greatly across different platforms. Correspondingly, there are a plethora of software and hardware implementations with their own unique technology stacks. Consequently, neuromorphic systems typically diverge from the expected computational model, which challenges the reproducibility and reliability across platforms. Additionally, most neuromorphic hardware is limited by its access via a single software frameworks with a limited set of training procedures. Here, we establish a common reference-frame for computations in neuromorphic systems, dubbed the Neuromorphic Intermediate Representation (NIR). NIR defines a set of computational primitives as idealized continuous-time hybrid systems that can be composed into graphs and mapped to and from various neuromorphic technology stacks. By abstracting away assumptions around discretization and hardware constraints, NIR faithfully captures the fundamental computation, while simultaneously exposing the exact differences between the evaluated implementation and the idealized mathematical formalism. We reproduce three NIR graphs across 7 neuromorphic simulators and 4 hardware platforms, demonstrating support for an unprecedented number of neuromorphic systems. With NIR, we decouple the evolution of neuromorphic hardware and software, ultimately increasing the interoperability between platforms and improving accessibility to neuromorphic technologies. We believe that NIR is an important step towards the continued study of brain-inspired hardware and bottom-up approaches aimed at an improved understanding of the computational underpinnings of nervous systems.
In the last ten years, various automated machine learning (AutoM ) systems have been proposed to build end-to-end machine learning (ML) pipelines with minimal human interaction. Even though such automatically synthesized ML pipelines are able to achieve a competitive performance, recent studies have shown that users do not trust models constructed by AutoML due to missing transparency of AutoML systems and missing explanations for the constructed ML pipelines. In a requirements analysis study with 36 domain experts, data scientists, and AutoML researchers from different professions with vastly different expertise in ML, we collect detailed informational needs for AutoML. We propose XAutoML, an interactive visual analytics tool for explaining arbitrary AutoML optimization procedures and ML pipelines constructed by AutoML. XAutoML combines interactive visualizations with established techniques from explainable artificial intelligence (XAI) to make the complete AutoML procedure transparent and explainable. By integrating XAutoML with JupyterLab, experienced users can extend the visual analytics with ad-hoc visualizations based on information extracted from XAutoML. We validate our approach in a user study with the same diverse user group from the requirements analysis. All participants were able to extract useful information from XAutoML, leading to a significantly increased understanding of ML pipelines produced by AutoML and the AutoML optimization itself.
We present BackboneLearn: an open-source software package and framework for scaling mixed-integer optimization (MIO) problems with indicator variables to high-dimensional problems. This optimization paradigm can naturally be used to formulate fundamental problems in interpretable supervised learning (e.g., sparse regression and decision trees), in unsupervised learning (e.g., clustering), and beyond; BackboneLearn solves the aforementioned problems faster than exact methods and with higher accuracy than commonly used heuristics. The package is built in Python and is user-friendly and easily extensible: users can directly implement a backbone algorithm for their MIO problem at hand. The source code of BackboneLearn is available on GitHub (link: //github.com/chziakas/backbone_learn).
Temporal data, notably time series and spatio-temporal data, are prevalent in real-world applications. They capture dynamic system measurements and are produced in vast quantities by both physical and virtual sensors. Analyzing these data types is vital to harnessing the rich information they encompass and thus benefits a wide range of downstream tasks. Recent advances in large language and other foundational models have spurred increased use of these models in time series and spatio-temporal data mining. Such methodologies not only enable enhanced pattern recognition and reasoning across diverse domains but also lay the groundwork for artificial general intelligence capable of comprehending and processing common temporal data. In this survey, we offer a comprehensive and up-to-date review of large models tailored (or adapted) for time series and spatio-temporal data, spanning four key facets: data types, model categories, model scopes, and application areas/tasks. Our objective is to equip practitioners with the knowledge to develop applications and further research in this underexplored domain. We primarily categorize the existing literature into two major clusters: large models for time series analysis (LM4TS) and spatio-temporal data mining (LM4STD). On this basis, we further classify research based on model scopes (i.e., general vs. domain-specific) and application areas/tasks. We also provide a comprehensive collection of pertinent resources, including datasets, model assets, and useful tools, categorized by mainstream applications. This survey coalesces the latest strides in large model-centric research on time series and spatio-temporal data, underscoring the solid foundations, current advances, practical applications, abundant resources, and future research opportunities.
Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.