亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Variational dimensionality reduction methods are known for their high accuracy, generative abilities, and robustness. We introduce a framework to unify many existing variational methods and design new ones. The framework is based on an interpretation of the multivariate information bottleneck, in which an encoder graph, specifying what information to compress, is traded-off against a decoder graph, specifying a generative model. Using this framework, we rederive existing dimensionality reduction methods including the deep variational information bottleneck and variational auto-encoders. The framework naturally introduces a trade-off parameter extending the deep variational CCA (DVCCA) family of algorithms to beta-DVCCA. We derive a new method, the deep variational symmetric informational bottleneck (DVSIB), which simultaneously compresses two variables to preserve information between their compressed representations. We implement these algorithms and evaluate their ability to produce shared low dimensional latent spaces on Noisy MNIST dataset. We show that algorithms that are better matched to the structure of the data (in our case, beta-DVCCA and DVSIB) produce better latent spaces as measured by classification accuracy, dimensionality of the latent variables, and sample efficiency. We believe that this framework can be used to unify other multi-view representation learning algorithms and to derive and implement novel problem-specific loss functions.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 統計量 · 可約的 · 估計/估計量 · binary ·
2024 年 3 月 20 日

Mediation analysis is an important statistical tool in many research fields. Its aim is to investigate the mechanism along the causal pathway between an exposure and an outcome. The joint significance test is widely utilized as a prominent statistical approach for examining mediation effects in practical applications. Nevertheless, the limitation of this mediation testing method stems from its conservative Type I error, which reduces its statistical power and imposes certain constraints on its popularity and utility. The proposed solution to address this gap is the adaptive joint significance test for one mediator, a novel data-adaptive test for mediation effect that exhibits significant advancements compared to traditional joint significance test. The proposed method is designed to be user-friendly, eliminating the need for complicated procedures. We have derived explicit expressions for size and power, ensuring the theoretical validity of our approach. Furthermore, we extend the proposed adaptive joint significance tests for small-scale mediation hypotheses with family-wise error rate (FWER) control. Additionally, a novel adaptive Sobel-type approach is proposed for the estimation of confidence intervals for the mediation effects, demonstrating significant advancements over conventional Sobel's confidence intervals in terms of achieving desirable coverage probabilities. Our mediation testing and confidence intervals procedure is evaluated through comprehensive simulations, and compared with numerous existing approaches. Finally, we illustrate the usefulness of our method by analysing three real-world datasets with continuous, binary and time-to-event outcomes, respectively.

There has long been plenty of theoretical and empirical evidence supporting the success of ensemble learning. Deep ensembles in particular take advantage of training randomness and expressivity of individual neural networks to gain prediction diversity, ultimately leading to better generalization, robustness and uncertainty estimation. In respect of generalization, it is found that pursuing wider local minima result in models being more robust to shifts between training and testing sets. A natural research question arises out of these two approaches as to whether a boost in generalization ability can be achieved if ensemble learning and loss sharpness minimization are integrated. Our work investigates this connection and proposes DASH - a learning algorithm that promotes diversity and flatness within deep ensembles. More concretely, DASH encourages base learners to move divergently towards low-loss regions of minimal sharpness. We provide a theoretical backbone for our method along with extensive empirical evidence demonstrating an improvement in ensemble generalizability.

For minimization problems without 2nd derivative information, methods that estimate Hessian ma- trices can be very effective. However, conventional techniques generate dense matrices that are prohibitive for large problems. Limited-memory compact representations express the dense arrays in terms of a low rank representation and have become the state-of-the-art for software implementations on large deterministic problems. We develop new compact representations that are parameterized by a choice of vectors and that reduce to existing well known formulas for special choices. We demonstrate effectiveness of the compact representations for large eigenvalue computations, tensor factorizations and nonlinear regressions.

A novel optimization procedure for the generation of stability polynomials of stabilized explicit Runge-Kutta methods is devised. Intended for semidiscretizations of hyperbolic partial differential equations, the herein developed approach allows the optimization of stability polynomials with more than hundred stages. A potential application of these high degree stability polynomials are problems with locally varying characteristic speeds as found in non-uniformly refined meshes and different wave speeds. To demonstrate the applicability of the stability polynomials we construct 2N storage many-stage Runge-Kutta methods that match their designed second order of accuracy when applied to a range of linear and nonlinear hyperbolic PDEs with smooth solutions. The methods are constructed to reduce the amplification of round off errors which becomes a significant concern for these many-stage methods.

In the realm of machine learning, traditional model development and automated approaches like AutoML typically rely on layers of abstraction, such as tree-based or Cartesian genetic programming. Our study introduces "Guided Evolution" (GE), a novel framework that diverges from these methods by utilizing Large Language Models (LLMs) to directly modify code. GE leverages LLMs for a more intelligent, supervised evolutionary process, guiding mutations and crossovers. Our unique "Evolution of Thought" (EoT) technique further enhances GE by enabling LLMs to reflect on and learn from the outcomes of previous mutations. This results in a self-sustaining feedback loop that augments decision-making in model evolution. GE maintains genetic diversity, crucial for evolutionary algorithms, by leveraging LLMs' capability to generate diverse responses from expertly crafted prompts and modulate model temperature. This not only accelerates the evolution process but also injects expert like creativity and insight into the process. Our application of GE in evolving the ExquisiteNetV2 model demonstrates its efficacy: the LLM-driven GE autonomously produced variants with improved accuracy, increasing from 92.52% to 93.34%, without compromising model compactness. This underscores the potential of LLMs to accelerate the traditional model design pipeline, enabling models to autonomously evolve and enhance their own designs.

Previous stance detection studies typically concentrate on evaluating stances within individual instances, thereby exhibiting limitations in effectively modeling multi-party discussions concerning the same specific topic, as naturally transpire in authentic social media interactions. This constraint arises primarily due to the scarcity of datasets that authentically replicate real social media contexts, hindering the research progress of conversational stance detection. In this paper, we introduce a new multi-turn conversation stance detection dataset (called \textbf{MT-CSD}), which encompasses multiple targets for conversational stance detection. To derive stances from this challenging dataset, we propose a global-local attention network (\textbf{GLAN}) to address both long and short-range dependencies inherent in conversational data. Notably, even state-of-the-art stance detection methods, exemplified by GLAN, exhibit an accuracy of only 50.47\%, highlighting the persistent challenges in conversational stance detection. Furthermore, our MT-CSD dataset serves as a valuable resource to catalyze advancements in cross-domain stance detection, where a classifier is adapted from a different yet related target. We believe that MT-CSD will contribute to advancing real-world applications of stance detection research. Our source code, data, and models are available at \url{//github.com/nfq729/MT-CSD}.

Data collected from arrays of sensors are essential for informed decision-making in various systems. However, the presence of anomalies can compromise the accuracy and reliability of insights drawn from the collected data or information obtained via statistical analysis. This study aims to develop a robust Bayesian optimal experimental design (BOED) framework with anomaly detection methods for high-quality data collection. We introduce a general framework that involves anomaly generation, detection and error scoring when searching for an optimal design. This method is demonstrated using two comprehensive simulated case studies: the first study uses a spatial dataset, and the second uses a spatio-temporal river network dataset. As a baseline approach, we employed a commonly used prediction-based utility function based on minimising errors. Results illustrate the trade-off between predictive accuracy and anomaly detection performance for our method under various design scenarios. An optimal design robust to anomalies ensures the collection and analysis of more trustworthy data, playing a crucial role in understanding the dynamics of complex systems such as the environment, therefore enabling informed decisions in monitoring, management, and response.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司