亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a multi-armed bandit problem in which a set of arms is registered by each agent, and the agent receives reward when its arm is selected. An agent might strategically submit more arms with replications, which can bring more reward by abusing the bandit algorithm's exploration-exploitation balance. Our analysis reveals that a standard algorithm indeed fails at preventing replication and suffers from linear regret in time $T$. We aim to design a bandit algorithm which demotivates replications and also achieves a small cumulative regret. We devise Hierarchical UCB (H-UCB) of replication-proof, which has $O(\ln T)$-regret under any equilibrium. We further propose Robust Hierarchical UCB (RH-UCB) which has a sublinear regret even in a realistic scenario with irrational agents replicating careless. We verify our theoretical findings through numerical experiments.

相關內容

Mobile edge computing facilitates users to offload computation tasks to edge servers for meeting their stringent delay requirements. Previous works mainly explore task offloading when system-side information is given (e.g., server processing speed, cellular data rate), or centralized offloading under system uncertainty. But both generally fall short to handle task placement involving many coexisting users in a dynamic and uncertain environment. In this paper, we develop a multi-user offloading framework considering unknown yet stochastic system-side information to enable a decentralized user-initiated service placement. Specifically, we formulate the dynamic task placement as an online multi-user multi-armed bandit process, and propose a decentralized epoch based offloading (DEBO) to optimize user rewards which are subjected under network delay. We show that DEBO can deduce the optimal user-server assignment, thereby achieving a close-to-optimal service performance and tight O(log T) offloading regret. Moreover, we generalize DEBO to various common scenarios such as unknown reward gap, dynamic entering or leaving of clients, and fair reward distribution, while further exploring when users' offloaded tasks require heterogeneous computing resources. Particularly, we accomplish a sub-linear regret for each of these instances. Real measurements based evaluations corroborate the superiority of our offloading schemes over state-of-the-art approaches in optimizing delay-sensitive rewards.

We study subtrajectory clustering under the Fr\'echet distance. Given one or more trajectories, the task is to split the trajectories into several parts, such that the parts have a good clustering structure. We approach this problem via a new set cover formulation, which we think provides a natural formalization of the problem as it is studied in many applications. Given a polygonal curve $P$ with $n$ vertices in fixed dimension, integers $k$, $\ell \geq 1$, and a real value $\Delta > 0$, the goal is to find $k$ center curves of complexity at most $\ell$ such that every point on $P$ is covered by a subtrajectory that has small Fr\'echet distance to one of the $k$ center curves ($\leq \Delta$). In many application scenarios, one is interested in finding clusters of small complexity, which is controlled by the parameter $\ell$. Our main result is a bicriterial approximation algorithm: if there exists a solution for given parameters $k$, $\ell$, and $\Delta$, then our algorithm finds a set of $k'$ center curves of complexity at most $\ell$ with covering radius $\Delta'$ with $k' \in O( k \ell^2 \log (k \ell))$, and $\Delta'\leq 19 \Delta$. Moreover, within these approximation bounds, we can minimize $k$ while keeping the other parameters fixed. If $\ell$ is a constant independent of $n$, then, the approximation factor for the number of clusters $k$ is $O(\log k)$ and the approximation factor for the radius $\Delta$ is constant. In this case, the algorithm has expected running time in $ \tilde{O}\left( k m^2 + mn\right)$ and uses space in $O(n+m)$, where $m=\lceil\frac{L}{\Delta}\rceil$ and $L$ is the total arclength of the curve $P$.

Multi-armed bandit algorithms like Thompson Sampling can be used to conduct adaptive experiments, in which maximizing reward means that data is used to progressively assign more participants to more effective arms. Such assignment strategies increase the risk of statistical hypothesis tests identifying a difference between arms when there is not one, and failing to conclude there is a difference in arms when there truly is one. We present simulations for 2-arm experiments that explore two algorithms that combine the benefits of uniform randomization for statistical analysis, with the benefits of reward maximization achieved by Thompson Sampling (TS). First, Top-Two Thompson Sampling adds a fixed amount of uniform random allocation (UR) spread evenly over time. Second, a novel heuristic algorithm, called TS PostDiff (Posterior Probability of Difference). TS PostDiff takes a Bayesian approach to mixing TS and UR: the probability a participant is assigned using UR allocation is the posterior probability that the difference between two arms is `small' (below a certain threshold), allowing for more UR exploration when there is little or no reward to be gained. We find that TS PostDiff method performs well across multiple effect sizes, and thus does not require tuning based on a guess for the true effect size.

Though platform trials have been touted for their flexibility and streamlined use of trial resources, their statistical efficiency is not well understood. We fill this gap by establishing their greater efficiency for comparing the relative efficacy of multiple interventions over using several separate, two-arm trials, where the relative efficacy of an arbitrary pair of interventions is evaluated by contrasting their relative risks as compared to control. In theoretical and numerical studies, we demonstrate that the inference of such a contrast using data from a platform trial enjoys identical or better precision than using data from separate trials, even when the former enrolls substantially fewer participants. This benefit is attributed to the sharing of controls among interventions under contemporaneous randomization, which is a key feature of platform trials. We further provide a novel procedure for establishing the non-inferiority of a given intervention relative to the most efficacious of the other interventions under evaluation, where this procedure is adaptive in the sense that it need not be \textit{a priori} known which of these other interventions is most efficacious. Our numerical studies show that this testing procedure can attain substantially better power when the data arise from a platform trial rather than multiple separate trials. Our results are illustrated using data from two monoclonal antibody trials for the prevention of HIV.

We introduce a divergence measure between data distributions based on operators in reproducing kernel Hilbert spaces defined by infinitely divisible kernels. The empirical estimator of the divergence is computed using the eigenvalues of positive definite matrices that are obtained by evaluating the kernel over pairs of samples. The new measure shares similar properties to Jensen-Shannon divergence. Convergence of the proposed estimators follows from concentration results based on the difference between the ordered spectrum of the Gram matrices and the integral operators associated with the population quantities. The proposed measure of divergence avoids the estimation of the probability distribution underlying the data. Numerical experiments involving comparing distributions and applications to sampling unbalanced data for classification show that the proposed divergence can achieve state of the art results.

Quantum computing promises remarkable approaches for processing information, but new tools are needed to compile program representations into the physical instructions required by a quantum computer. Here we present a novel adaptation of the multi-level intermediate representation (MLIR) integrated into a quantum compiler that may be used for checking program execution. We first present how MLIR enables quantum circuit transformations for efficient execution on quantum computing devices and then give an example of compiler transformations based on so-called mirror circuits. We demonstrate that mirror circuits inserted during compilation may test hardware performance by assessing quantum circuit accuracy on several superconducting and ion trap hardware platforms. Our results validate MLIR as an efficient and effective method for collecting hardware-dependent diagnostics through automated transformations of quantum circuits.

Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.

User behavior data in recommender systems are driven by the complex interactions of many latent factors behind the users' decision making processes. The factors are highly entangled, and may range from high-level ones that govern user intentions, to low-level ones that characterize a user's preference when executing an intention. Learning representations that uncover and disentangle these latent factors can bring enhanced robustness, interpretability, and controllability. However, learning such disentangled representations from user behavior is challenging, and remains largely neglected by the existing literature. In this paper, we present the MACRo-mIcro Disentangled Variational Auto-Encoder (MacridVAE) for learning disentangled representations from user behavior. Our approach achieves macro disentanglement by inferring the high-level concepts associated with user intentions (e.g., to buy a shirt or a cellphone), while capturing the preference of a user regarding the different concepts separately. A micro-disentanglement regularizer, stemming from an information-theoretic interpretation of VAEs, then forces each dimension of the representations to independently reflect an isolated low-level factor (e.g., the size or the color of a shirt). Empirical results show that our approach can achieve substantial improvement over the state-of-the-art baselines. We further demonstrate that the learned representations are interpretable and controllable, which can potentially lead to a new paradigm for recommendation where users are given fine-grained control over targeted aspects of the recommendation lists.

Although Faster R-CNN and its variants have shown promising performance in object detection, they only exploit simple first-order representation of object proposals for final classification and regression. Recent classification methods demonstrate that the integration of high-order statistics into deep convolutional neural networks can achieve impressive improvement, but their goal is to model whole images by discarding location information so that they cannot be directly adopted to object detection. In this paper, we make an attempt to exploit high-order statistics in object detection, aiming at generating more discriminative representations for proposals to enhance the performance of detectors. To this end, we propose a novel Multi-scale Location-aware Kernel Representation (MLKP) to capture high-order statistics of deep features in proposals. Our MLKP can be efficiently computed on a modified multi-scale feature map using a low-dimensional polynomial kernel approximation.Moreover, different from existing orderless global representations based on high-order statistics, our proposed MLKP is location retentive and sensitive so that it can be flexibly adopted to object detection. Through integrating into Faster R-CNN schema, the proposed MLKP achieves very competitive performance with state-of-the-art methods, and improves Faster R-CNN by 4.9% (mAP), 4.7% (mAP) and 5.0% (AP at IOU=[0.5:0.05:0.95]) on PASCAL VOC 2007, VOC 2012 and MS COCO benchmarks, respectively. Code is available at: //github.com/Hwang64/MLKP.

In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.

北京阿比特科技有限公司