Quantum computing promises remarkable approaches for processing information, but new tools are needed to compile program representations into the physical instructions required by a quantum computer. Here we present a novel adaptation of the multi-level intermediate representation (MLIR) integrated into a quantum compiler that may be used for checking program execution. We first present how MLIR enables quantum circuit transformations for efficient execution on quantum computing devices and then give an example of compiler transformations based on so-called mirror circuits. We demonstrate that mirror circuits inserted during compilation may test hardware performance by assessing quantum circuit accuracy on several superconducting and ion trap hardware platforms. Our results validate MLIR as an efficient and effective method for collecting hardware-dependent diagnostics through automated transformations of quantum circuits.
Quantum computing is evolving so quickly that forces us to revisit, rewrite, and update the basis of the theory. Basic Quantum Algorithms revisits the first quantum algorithms. It started in 1985 with Deutsch trying to evaluate a function at two domain points simultaneously. Then, Deutsch and Jozsa created in 1992 a quantum algorithm that determines whether a Boolean function is constant or balanced. In the next year, Bernstein and Vazirani realized that the same algorithm can be used to find a specific Boolean function in the set of linear Boolean functions. In 1994, Simon presented a new quantum algorithm that determines whether a function is one-to-one or two-to-one exponentially faster than any classical algorithm for the same problem. In the same year, Shor created two new quantum algorithms for factoring integers and calculating discrete logarithms, threatening the cryptography methods widely used nowadays. In 1995, Kitaev described an alternative version for Shor's algorithms that proved useful in many other applications. In the following year, Grover created a quantum search algorithm quadratically faster than its classical counterpart. In this work, all those remarkable algorithms are described in detail with a focus on the circuit model.
The exponential growth of scientific production makes secondary literature abridgements increasingly demanding. We introduce a new open-source framework for systematic reviews that significantly reduces time and workload for collecting and screening scientific literature. The framework provides three main tools: 1) an automatic citation search engine and manager that collects records from multiple online sources with a unified query syntax, 2) a Bayesian, active machine learning, citation screening tool based on iterative human-machine interaction to increase predictive accuracy and, 3) a semi-automatic, data-driven query generator to create new search queries from existing citation data sets. To evaluate the automatic screener's performance, we estimated the median posterior sensitivity and efficiency [90% Credible Intervals] using Bayesian simulation to predict the distribution of undetected potentially relevant records. Tested on an example topic, the framework collected 17,755 unique records through the citation manager; 766 records required human evaluation while the rest were excluded by the automatic classifier; the theoretical efficiency was 95.6% [95.3%, 95.7%] with a sensitivity of 100% [93.5%, 100%]. A new search query was generated from the labelled dataset, and 82,579 additional records were collected; only 567 records required human review after automatic screening, and six additional positive matches were found. The overall expected sensitivity decreased to 97.3% [73.8%, 100%] while the efficiency increased to 98.6% [98.2%, 98.7%]. The framework can significantly reduce the workload required to conduct large literature reviews by simplifying citation collection and screening while demonstrating exceptional sensitivity. Such a tool can improve the standardization and repeatability of systematic reviews.
In this paper, we study the problem of learning an unknown quantum circuit of a certain structure. If the unknown target is an $n$-qubit Clifford circuit, we devise an efficient algorithm to reconstruct its circuit representation by using $O(n^2)$ queries to it. For decades, it has been unknown how to handle circuits beyond the Clifford group since the stabilizer formalism cannot be applied in this case. Herein, we study quantum circuits of $T$-depth one on the computational basis. We show that the output state of a $T$-depth one circuit can be represented by a stabilizer pseudomixture with a specific algebraic structure. Using Pauli and Bell measurements on copies of the output states, we can generate a hypothesis circuit that is equivalent to the unknown target circuit on computational basis states as input. If the number of $T$ gates of the target is of the order $O({{\log n}})$, our algorithm requires $O(n^2)$ queries to it and produces its equivalent circuit representation on the computational basis in time $O(n^3)$. Using further additional $O(4^{3n})$ classical computations, we can derive an exact description of the target for arbitrary input states. Our results greatly extend the previously known facts that stabilizer states can be efficiently identified based on the stabilizer formalism.
The use of function contracts to specify the behavior of functions often remains limited to the scope of a single function call. Relational properties link several function calls together within a single specification. They can express more advanced properties of a given function, such as non-interference, continuity, or monotonicity. They can also relate calls to different functions, for instance, to show that an optimized implementation is equivalent to its original counterpart. However, relational properties cannot be expressed and verified directly in the traditional setting of modular deductive verification. Self-composition has been proposed to overcome this limitation, but it requires complex transformations and additional separation hypotheses for real-life languages with pointers. We propose a novel approach that is not based on code transformation and avoids those drawbacks. It directly applies a verification condition generator to produce logical formulas that must be verified to ensure a given relational property. The approach has been fully formalized and proved sound in the Coq proof assistant.
Despite the significant improvements that representation learning via self-supervision has led to when learning from unlabeled data, no methods exist that explain what influences the learned representation. We address this need through our proposed approach, RELAX, which is the first approach for attribution-based explanations of representations. Our approach can also model the uncertainty in its explanations, which is essential to produce trustworthy explanations. RELAX explains representations by measuring similarities in the representation space between an input and masked out versions of itself, providing intuitive explanations and significantly outperforming the gradient-based baseline. We provide theoretical interpretations of RELAX and conduct a novel analysis of feature extractors trained using supervised and unsupervised learning, providing insights into different learning strategies. Finally, we illustrate the usability of RELAX in multi-view clustering and highlight that incorporating uncertainty can be essential for providing low-complexity explanations, taking a crucial step towards explaining representations.
Classical machine learning (ML) provides a potentially powerful approach to solving challenging quantum many-body problems in physics and chemistry. However, the advantages of ML over more traditional methods have not been firmly established. In this work, we prove that classical ML algorithms can efficiently predict ground state properties of gapped Hamiltonians in finite spatial dimensions, after learning from data obtained by measuring other Hamiltonians in the same quantum phase of matter. In contrast, under widely accepted complexity theory assumptions, classical algorithms that do not learn from data cannot achieve the same guarantee. We also prove that classical ML algorithms can efficiently classify a wide range of quantum phases of matter. Our arguments are based on the concept of a classical shadow, a succinct classical description of a many-body quantum state that can be constructed in feasible quantum experiments and be used to predict many properties of the state. Extensive numerical experiments corroborate our theoretical results in a variety of scenarios, including Rydberg atom systems, 2D random Heisenberg models, symmetry-protected topological phases, and topologically ordered phases.
In this expository article we present an overview of the current state-of-the-art in post-quantum group-based cryptography. We describe several families of groups that have been proposed as platforms, with special emphasis in polycyclic groups and graph groups, dealing in particular with their algorithmic properties and cryptographic applications. We then, describe some applications of combinatorial algebra in fully homomorphic encryption. In the end we discussing several open problems in this direction.
The ZX-calculus is a graphical language for reasoning about quantum computation using ZX-diagrams, a certain flexible generalisation of quantum circuits that can be used to represent linear maps from $m$ to $n$ qubits for any $m,n \geq 0$. Some applications for the ZX-calculus, such as quantum circuit optimisation and synthesis, rely on being able to efficiently translate a ZX-diagram back into a quantum circuit of comparable size. While several sufficient conditions are known for describing families of ZX-diagrams that can be efficiently transformed back into circuits, it has previously been conjectured that the general problem of circuit extraction is hard. That is, that it should not be possible to efficiently convert an arbitrary ZX-diagram describing a unitary linear map into an equivalent quantum circuit. In this paper we prove this conjecture by showing that the circuit extraction problem is #P-hard, and so is itself at least as hard as strong simulation of quantum circuits. In addition to our main hardness result, which relies specifically on the circuit representation, we give a representation-agnostic hardness result. Namely, we show that any oracle that takes as input a ZX-diagram description of a unitary and produces samples of the output of the associated quantum computation enables efficient probabilistic solutions to NP-complete problems.
Quantum computing systems rely on the principles of quantum mechanics to perform a multitude of computationally challenging tasks more efficiently than their classical counterparts. The architecture of software-intensive systems can empower architects who can leverage architecture-centric processes, practices, description languages, etc., to model, develop, and evolve quantum computing software (quantum software for short) at higher abstraction levels. We conducted a systematic literature review (SLR) to investigate (i) architectural process, (ii) modeling notations, (iii) architecture design patterns, (iv) tool support, and (iv) challenging factors for quantum software architecture. Results of the SLR indicate that quantum software represents a new genre of software-intensive systems; however, existing processes and notations can be tailored to derive the architecting activities and develop modeling languages for quantum software. Quantum bits (Qubits) mapped to Quantum gates (Qugates) can be represented as architectural components and connectors that implement quantum software. Tool-chains can incorporate reusable knowledge and human roles (e.g., quantum domain engineers, quantum code developers) to automate and customize the architectural process. Results of this SLR can facilitate researchers and practitioners to develop new hypotheses to be tested, derive reference architectures, and leverage architecture-centric principles and practices to engineer emerging and next generations of quantum software.
Efficient solution of 3D elasticity problems is an important part of many industrial and scientific applications. Smoothed aggregation algebraic multigrid using rigid body modes for the tentative prolongation operator construction is an efficient and robust choice for the solution of linear systems arising from the discretization of elasticity equations. The system matrices on every level of the multigrid hierarchy have block structure, so using block representation and block arithmetics should significantly improve the solver efficiency. However, the tentative prolongation operator construction may only be done using scalar representation. The paper proposes a couple of practical approaches for enabling the use of block arithmetics with smoothed aggregation algebraic multigrid based on the open-source AMGCL library. It is shown on the example of two real-world model problems that the suggested improvements may speed up the solution by 50% and reduce the memory requirements for the preconditioner by 30%. The implementation is straightforward and only requires a minimal amount of code.