亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The classical Zarankiewicz's problem asks for the maximum number of edges in a bipartite graph on $n$ vertices which does not contain the complete bipartite graph $K_{t,t}$. In one of the cornerstones of extremal graph theory, K\H{o}v\'ari S\'os and Tur\'an proved an upper bound of $O(n^{2-\frac{1}{t}})$. In a celebrated result, Fox et al. obtained an improved bound of $O(n^{2-\frac{1}{d}})$ for graphs of VC-dimension $d$ (where $d<t$). Basit, Chernikov, Starchenko, Tao and Tran improved the bound for the case of semilinear graphs. At SODA'23, Chan and Har-Peled further improved Basit et al.'s bounds and presented (quasi-)linear upper bounds for several classes of geometrically-defined incidence graphs, including a bound of $O(n \log \log n)$ for the incidence graph of points and pseudo-discs in the plane. In this paper we present a new approach to Zarankiewicz's problem, via $\epsilon$-t-nets - a recently introduced generalization of the classical notion of $\epsilon$-nets. We show that the existence of `small'-sized $\epsilon$-t-nets implies upper bounds for Zarankiewicz's problem. Using the new approach, we obtain a sharp bound of $O(n)$ for the intersection graph of two families of pseudo-discs, thus both improving and generalizing the result of Chan and Har-Peled from incidence graphs to intersection graphs. We also obtain a short proof of the $O(n^{2-\frac{1}{d}})$ bound of Fox et al., and show improved bounds for several other classes of geometric intersection graphs, including a sharp $O(n\frac{\log n}{\log \log n})$ bound for the intersection graph of two families of axis-parallel rectangles.

相關內容

We study the Euler scheme for scalar non-autonomous stochastic differential equations, whose diffusion coefficient is not globally Lipschitz but a fractional power of a globally Lipschitz function. We analyse the strong error and establish a criterion, which relates the convergence order of the Euler scheme to an inverse moment condition for the diffusion coefficient. Our result in particular applies to Cox-Ingersoll-Ross-, Chan-Karolyi-Longstaff-Sanders- or Wright-Fisher-type stochastic differential equations and thus provides a unifying framework.

Kleene's computability theory based on the S1-S9 computation schemes constitutes a model for computing with objects of any finite type and extends Turing's 'machine model' which formalises computing with real numbers. A fundamental distinction in Kleene's framework is between normal and non-normal functionals where the former compute the associated Kleene quantifier $\exists^n$ and the latter do not. Historically, the focus was on normal functionals, but recently new non-normal functionals have been studied based on well-known theorems, the weakest among which seems to be the uncountability of the reals. These new non-normal functionals are fundamentally different from historical examples like Tait's fan functional: the latter is computable from $\exists^2$, while the former are computable in $\exists^3$ but not in weaker oracles. Of course, there is a great divide or abyss separating $\exists^2$ and $\exists^3$ and we identify slight variations of our new non-normal functionals that are again computable in $\exists^2$, i.e. fall on different sides of this abyss. Our examples are based on mainstream mathematical notions, like quasi-continuity, Baire classes, bounded variation, and semi-continuity from real analysis.

We present algorithms for computing the reduced Gr\"{o}bner basis of the vanishing ideal of a finite set of points in a frame of ideal interpolation. Ideal interpolation is defined by a linear projector whose kernel is a polynomial ideal. In this paper, we translate interpolation condition functionals into formal power series via Taylor expansion, then the reduced Gr\"{o}bner basis is read from formal power series by Gaussian elimination. Our algorithm has a polynomial time complexity. It compares favorably with MMM algorithm in single point ideal interpolation and some several points ideal interpolation.

The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. In this work, we present a novel unified arc-length (UAL) method, and we derive the formulation of the analytical tangent matrix and governing system of equations for both local and non-local gradient damage problems. Unlike existing versions of arc-length solvers that monolithically scale the external force vector, the proposed method treats the latter as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. This approach renders the proposed solver substantially more efficient and robust than existing solvers used in CDM problems. We demonstrate the considerable advantages of the proposed algorithm through several benchmark 1D problems with sharp snap-backs and 2D examples under various boundary conditions and loading scenarios. The proposed UAL approach exhibits a superior ability of overcoming critical increments along the equilibrium path. Moreover, in the presented examples, the proposed UAL method is 1-2 orders of magnitude faster than force-controlled arc-length and monolithic Newton-Raphson solvers.

We study the asymptotic behavior of double and four circulant codes, which are quasi-cyclic codes of index two and four respectively. Exact enumeration results are derived for these families of codes with the prescribed hull dimension. These formulas, in turn, are the most used tools to prove the good behavior of double circulant and four circulant codes asymptotically. Computational results on the code families in consideration are provided as well.

A novel algorithm is proposed for quantitative comparisons between compact surfaces embedded in the three-dimensional Euclidian space. The key idea is to identify those objects with the associated surface measures and compute a weak distance between them using the Fourier transform on the ambient space. In particular, the inhomogeneous Sobolev norm of negative order for a difference between two surface measures is evaluated via the Plancherel theorem, which amounts to approximating a weighted integral norm of smooth data on the frequency space. This approach allows several advantages including high accuracy due to fast-converging numerical quadrature rules, acceleration by the nonuniform fast Fourier transform, and parallelization on many-core processors. In numerical experiments, the 2-sphere, which is an example whose Fourier transform is explicitly known, is compared with its icosahedral discretization, and it is observed that the piecewise linear approximations converge to the smooth object at the quadratic rate up to small truncation.

We describe a new dependent-rounding algorithmic framework for bipartite graphs. Given a fractional assignment $y$ of values to edges of graph $G = (U \cup V, E)$, the algorithms return an integral solution $Y$ such that each right-node $v \in V$ has at most one neighboring edge $f$ with $Y_f = 1$, and where the variables $Y_e$ also satisfy broad nonpositive-correlation properties. In particular, for any edges $e_1, e_2$ sharing a left-node $u \in U$, the variables $Y_{e_1}, Y_{e_2}$ have strong negative-correlation properties, i.e. the expectation of $Y_{e_1} Y_{e_2}$ is significantly below $y_{e_1} y_{e_2}$. This algorithm is based on generating negatively-correlated Exponential random variables and using them in a contention-resolution scheme inspired by an algorithm Im & Shadloo (2020). Our algorithm gives stronger and much more flexible negative correlation properties. Dependent rounding schemes with negative correlation properties have been used for approximation algorithms for job-scheduling on unrelated machines to minimize weighted completion times (Bansal, Srinivasan, & Svensson (2021), Im & Shadloo (2020), Im & Li (2023)). Using our new dependent-rounding algorithm, among other improvements, we obtain a $1.398$-approximation for this problem. This significantly improves over the prior $1.45$-approximation ratio of Im & Li (2023).

Analogical proportions are expressions of the form ``$a$ is to $b$ what $c$ is to $d$'' at the core of analogical reasoning which itself is at the core of human and artificial intelligence. The author has recently introduced {\em from first principles} an abstract algebro-logical framework of analogical proportions within the general setting of universal algebra and first-order logic. In that framework, the source and target algebras have the {\em same} underlying language. The purpose of this paper is to generalize his unilingual framework to a bilingual one where the underlying languages may differ. This is achieved by using hedges in justifications of proportions. The outcome is a major generalization vastly extending the applicability of the underlying framework. In a broader sense, this paper is a further step towards a mathematical theory of analogical reasoning.

Characterizing the solution sets in a problem by closedness under operations is recognized as one of the key aspects of algorithm development, especially in constraint satisfaction. An example from the Boolean satisfiability problem is that the solution set of a Horn conjunctive normal form (CNF) is closed under the minimum operation, and this property implies that minimizing a nonnegative linear function over a Horn CNF can be done in polynomial time. In this paper, we focus on the set of integer points (vectors) in a polyhedron, and study the relation between these sets and closedness under operations from the viewpoint of 2-decomposability. By adding further conditions to the 2-decomposable polyhedra, we show that important classes of sets of integer vectors in polyhedra are characterized by 2-decomposability and closedness under certain operations, and in some classes, by closedness under operations alone. The most prominent result we show is that the set of integer vectors in a unit-two-variable-per-inequality polyhedron can be characterized by closedness under the median and directed discrete midpoint operations, each of these operations was independently considered in constraint satisfaction and discrete convex analysis.

Nurmuhammad et al. developed the Sinc-Nystr\"{o}m methods for initial value problems in which the solutions exhibit exponential decay end behavior. In these methods, the Single-Exponential (SE) transformation or the Double-Exponential (DE) transformation is combined with the Sinc approximation. Hara and Okayama improved on these transformations to attain a better convergence rate, which was later supported by theoretical error analyses. However, these methods have a computational drawback owing to the inclusion of a special function in the basis functions. To address this issue, Okayama and Hara proposed Sinc-collocation methods, which do not include any special function in the basis functions. This study conducts error analyses of these methods.

北京阿比特科技有限公司