亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Audio-visual speaker diarization aims at detecting "who spoke when" using both auditory and visual signals. Existing audio-visual diarization datasets are mainly focused on indoor environments like meeting rooms or news studios, which are quite different from in-the-wild videos in many scenarios such as movies, documentaries, and audience sitcoms. To develop diarization methods for these challenging videos, we create the AVA Audio-Visual Diarization (AVA-AVD) dataset. Our experiments demonstrate that adding AVA-AVD into training set can produce significantly better diarization models for in-the-wild videos despite that the data is relatively small. Moreover, this benchmark is challenging due to the diverse scenes, complicated acoustic conditions, and completely off-screen speakers. As a first step towards addressing the challenges, we design the Audio-Visual Relation Network (AVR-Net) which introduces a simple yet effective modality mask to capture discriminative information based on face visibility. Experiments show that our method not only can outperform state-of-the-art methods but is more robust as varying the ratio of off-screen speakers. Our data and code has been made publicly available at //github.com/showlab/AVA-AVD.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Extensibility · MoDELS · 代碼 · Continuity ·
2022 年 9 月 8 日

We propose im2nerf, a learning framework that predicts a continuous neural object representation given a single input image in the wild, supervised by only segmentation output from off-the-shelf recognition methods. The standard approach to constructing neural radiance fields takes advantage of multi-view consistency and requires many calibrated views of a scene, a requirement that cannot be satisfied when learning on large-scale image data in the wild. We take a step towards addressing this shortcoming by introducing a model that encodes the input image into a disentangled object representation that contains a code for object shape, a code for object appearance, and an estimated camera pose from which the object image is captured. Our model conditions a NeRF on the predicted object representation and uses volume rendering to generate images from novel views. We train the model end-to-end on a large collection of input images. As the model is only provided with single-view images, the problem is highly under-constrained. Therefore, in addition to using a reconstruction loss on the synthesized input view, we use an auxiliary adversarial loss on the novel rendered views. Furthermore, we leverage object symmetry and cycle camera pose consistency. We conduct extensive quantitative and qualitative experiments on the ShapeNet dataset as well as qualitative experiments on Open Images dataset. We show that in all cases, im2nerf achieves the state-of-the-art performance for novel view synthesis from a single-view unposed image in the wild.

Accent forms an integral part of identifying cultures, emotions,behavior's, etc. People often perceive each other in a different manner due to their accent. The accent itself can be a conveyor of status, pride, and other emotional information which can be captured through Speech itself. Accent itself can be defined as: "the way in which people in a particular area, country, or social group pronounce words" or "a special emphasis given to a syllable in a word, word in a sentence, or note in a set of musical notes". Accented Speech Recognition is one the most important problems in the domain of Speech Recognition. Speech recognition is an interdisciplinary sub-field of Computer Science and Linguistics research where the main aim is to develop technologies which enable conversion of speech into text. The speech can be of any form such as read speech or spontaneous speech, conversational speech. Speech unlike text has lot of diversity. This diversity stems from the environmental conditions, variabilities from speaker to speaker, channel noise, differences in Speech production due to disabilities, presence of disfluencies. Speech therefore is indeed a rich source of information waiting to be exploited.

We present ESSYS* Sharing #UC, an audiovisual installation artwork that reflects upon the emotional context related to the university and the city of Coimbra, based on the data shared about them on Twitter. The installation was presented in an urban art gallery of C\'irculo de Artes Pl\'asticas de Coimbra during the summer and autumn of 2021. In the installation space, one may see a collection of typographic posters displaying the tweets and listening to an ever-changing ambient sound. The present audiovisuals are created by an autonomous computational creative approach, which employs a neural classifier to recognize the emotional context of a tweet and uses this resulting data as feedstock for the audiovisual generation. The installation's space is designed to promote an approach and blend between the online and physical perceptions of the same location. We applied multiple experiments with the proposed approach to evaluate the capability and performance. Also, we conduct interview-based evaluation sessions to understand how the installation elements, especially poster designs, are experienced by people regarding diversity, expressiveness and possible employment in other commercial and social scenarios.

This paper proposes the MBURST, a novel multimodal solution for audio-visual speech enhancements that consider the most recent neurological discoveries regarding pyramidal cells of the prefrontal cortex and other brain regions. The so-called burst propagation implements several criteria to address the credit assignment problem in a more biologically plausible manner: steering the sign and magnitude of plasticity through feedback, multiplexing the feedback and feedforward information across layers through different weight connections, approximating feedback and feedforward connections, and linearizing the feedback signals. MBURST benefits from such capabilities to learn correlations between the noisy signal and the visual stimuli, thus attributing meaning to the speech by amplifying relevant information and suppressing noise. Experiments conducted over a Grid Corpus and CHiME3-based dataset show that MBURST can reproduce similar mask reconstructions to the multimodal backpropagation-based baseline while demonstrating outstanding energy efficiency management, reducing the neuron firing rates to values up to \textbf{$70\%$} lower. Such a feature implies more sustainable implementations, suitable and desirable for hearing aids or any other similar embedded systems.

Graphs can have different properties that lead to several graph types and may allow for a varying representation of diverse information. In order to clarify the modeling power of graphs, we introduce a partial order on the most common graph types based on an expressivity relation. The expressivity relation quantifies how many properties a graph type can encode compared to another type. Additionally, we show that all attributed graph types are equally expressive and have the same modeling power.

Skeleton-based human action recognition is a longstanding challenge due to its complex dynamics. Some fine-grain details of the dynamics play a vital role in classification. The existing work largely focuses on designing incremental neural networks with more complicated adjacent matrices to capture the details of joints relationships. However, they still have difficulties distinguishing actions that have broadly similar motion patterns but belong to different categories. Interestingly, we found that the subtle differences in motion patterns can be significantly amplified and become easy for audience to distinct through specified view directions, where this property haven't been fully explored before. Drastically different from previous work, we boost the performance by proposing a conceptually simple yet effective Multi-view strategy that recognizes actions from a collection of dynamic view features. Specifically, we design a novel Skeleton-Anchor Proposal (SAP) module which contains a Multi-head structure to learn a set of views. For feature learning of different views, we introduce a novel Angle Representation to transform the actions under different views and feed the transformations into the baseline model. Our module can work seamlessly with the existing action classification model. Incorporated with baseline models, our SAP module exhibits clear performance gains on many challenging benchmarks. Moreover, comprehensive experiments show that our model consistently beats down the state-of-the-art and remains effective and robust especially when dealing with corrupted data. Related code will be available on //github.com/ideal-idea/SAP .

We present DAVE Aquatic Virtual Environment (DAVE), an open source simulation stack for underwater robots, sensors, and environments. Conventional robotics simulators are not designed to address unique challenges that come with the marine environment, including but not limited to environment conditions that vary spatially and temporally, impaired or challenging perception, and the unavailability of data in a generally unexplored environment. Given the variety of sensors and platforms, wheels are often reinvented for specific use cases that inevitably resist wider adoption. Building on existing simulators, we provide a framework to help speed up the development and evaluation of algorithms that would otherwise require expensive and time-consuming operations at sea. The framework includes basic building blocks (e.g., new vehicles, water-tracking Doppler Velocity Logger, physics-based multibeam sonar) as well as development tools (e.g., dynamic bathymetry spawning, ocean currents), which allows the user to focus on methodology rather than software infrastructure. We demonstrate usage through example scenarios, bathymetric data import, user interfaces for data inspection and motion planning for manipulation, and visualizations.

Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.

This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions

北京阿比特科技有限公司