亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents new methods and results for recognising black-box program functions using hardware performance counters (HPC), where an investigator can invoke and measure function calls. Important use cases include analysing compiled libraries, e.g. static and dynamic link libraries, and trusted execution environment (TEE) applications. We develop a generic approach to classify a comprehensive set of hardware events, e.g. branch mis-predictions and instruction retirements, to recognise standard benchmarking and cryptographic library functions. This includes various signing, verification and hash functions, and ciphers in numerous modes of operation. Three architectures are evaluated using off-the-shelf Intel/X86-64, ARM, and RISC-V CPUs. Next, we show that several known CVE-numbered OpenSSL vulnerabilities can be detected using HPC differences between patched and unpatched library versions. Further, we demonstrate that standardised cryptographic functions within ARM TrustZone TEE applications can be recognised using non-secure world HPC measurements, applying to platforms that insecurely perturb the performance monitoring unit (PMU) during TEE execution. High accuracy was achieved in all cases (86.22-99.83%) depending on the application, architectural, and compilation assumptions. Lastly, we discuss mitigations, outstanding challenges, and directions for future research.

相關內容

Globalization in the semiconductor industry enables fabless design houses to reduce their costs, save time, and make use of newer technologies. However, the offshoring of Integrated Circuit (IC) fabrication has negative sides, including threats such as Hardware Trojans (HTs) - a type of malicious logic that is not trivial to detect. One aspect of IC design that is not affected by globalization is the need for thorough verification. Verification engineers devise complex assets to make sure designs are bug-free, including assertions. This knowledge is typically not reused once verification is over. The premise of this paper is that verification assets that already exist can be turned into effective security checkers for HT detection. For this purpose, we show how assertions can be used as online monitors. To this end, we propose a security metric and an assertion selection flow that leverages Cadence JasperGold Security Path Verification (SPV). The experimental results show that our approach scales for industry-size circuits by analyzing more than 100 assertions for different Intellectual Properties (IPs) of the OpenTitan System-on-Chip (SoC). Moreover, our detection solution is pragmatic since it does not rely on the HT activation mechanism.

Hindsight goal relabeling has become a foundational technique in multi-goal reinforcement learning (RL). The essential idea is that any trajectory can be seen as a sub-optimal demonstration for reaching its final state. Intuitively, learning from those arbitrary demonstrations can be seen as a form of imitation learning (IL). However, the connection between hindsight goal relabeling and imitation learning is not well understood. In this paper, we propose a novel framework to understand hindsight goal relabeling from a divergence minimization perspective. Recasting the goal reaching problem in the IL framework not only allows us to derive several existing methods from first principles, but also provides us with the tools from IL to improve goal reaching algorithms. Experimentally, we find that under hindsight relabeling, Q-learning outperforms behavioral cloning (BC). Yet, a vanilla combination of both hurts performance. Concretely, we see that the BC loss only helps when selectively applied to actions that get the agent closer to the goal according to the Q-function. Our framework also explains the puzzling phenomenon wherein a reward of (-1, 0) results in significantly better performance than a (0, 1) reward for goal reaching.

Snoring is one of the most prominent symptoms of Obstructive Sleep Apnea-Hypopnea Syndrome (OSAH), a highly prevalent disease that causes repetitive collapse and cessation of the upper airway. Thus, accurate snore sound monitoring and analysis is crucial. However, the traditional monitoring method polysomnography (PSG) requires the patients to stay at a sleep clinic for the whole night and be connected to many pieces of equipment. An alternative and less invasive way is passive monitoring using a smartphone at home or in the clinical settings. But, there is a challenge: the environment may be shared by people such that the raw audio may contain the snore activities of the bed partner or other person. False capturing of the snoring activity could lead to critical false alarms and misdiagnosis of the patients. To address this limitation, we propose a hypothesis that snore sound contains unique identity information which can be used for user recognition. We analyzed various machine learning models: Gaussian Mixture Model (GMM), GMM-UBM (Universial Background Model), and a Deep Neural Network (DNN) on MPSSC - an open source snoring dataset to evaluate the validity of our hypothesis. Our results are promising as we achieved around 90% accuracy in identification and verification tasks. This work marks the first step towards understanding the practicality of snore based user monitoring to enable multiple healthcare applicaitons.

We propose methods for the analysis of hierarchical clustering that fully use the multi-resolution structure provided by a dendrogram. Specifically, we propose a loss for choosing between clustering methods, a feature importance score and a graphical tool for visualizing the segmentation of features in a dendrogram. Current approaches to these tasks lead to loss of information since they require the user to generate a single partition of the instances by cutting the dendrogram at a specified level. Our proposed methods, instead, use the full structure of the dendrogram. The key insight behind the proposed methods is to view a dendrogram as a phylogeny. This analogy permits the assignment of a feature value to each internal node of a tree through an evolutionary model. Real and simulated datasets provide evidence that our proposed framework has desirable outcomes and gives more insights than state-of-art approaches. We provide an R package that implements our methods.

The last decade of machine learning has seen drastic increases in scale and capabilities. Deep neural networks (DNNs) are increasingly being deployed in the real world. However, they are difficult to analyze, raising concerns about using them without a rigorous understanding of how they function. Effective tools for interpreting them will be important for building more trustworthy AI by helping to identify problems, fix bugs, and improve basic understanding. In particular, "inner" interpretability techniques, which focus on explaining the internal components of DNNs, are well-suited for developing a mechanistic understanding, guiding manual modifications, and reverse engineering solutions. Much recent work has focused on DNN interpretability, and rapid progress has thus far made a thorough systematization of methods difficult. In this survey, we review over 300 works with a focus on inner interpretability tools. We introduce a taxonomy that classifies methods by what part of the network they help to explain (weights, neurons, subnetworks, or latent representations) and whether they are implemented during (intrinsic) or after (post hoc) training. To our knowledge, we are also the first to survey a number of connections between interpretability research and work in adversarial robustness, continual learning, modularity, network compression, and studying the human visual system. We discuss key challenges and argue that the status quo in interpretability research is largely unproductive. Finally, we highlight the importance of future work that emphasizes diagnostics, debugging, adversaries, and benchmarking in order to make interpretability tools more useful to engineers in practical applications.

Bayesian model comparison (BMC) offers a principled approach for assessing the relative merits of competing computational models and propagating uncertainty into model selection decisions. However, BMC is often intractable for the popular class of hierarchical models due to their high-dimensional nested parameter structure. To address this intractability, we propose a deep learning method for performing BMC on any set of hierarchical models which can be instantiated as probabilistic programs. Since our method enables amortized inference, it allows efficient re-estimation of posterior model probabilities and fast performance validation prior to any real-data application. In a series of extensive validation studies, we benchmark the performance of our method against the state-of-the-art bridge sampling method and demonstrate excellent amortized inference across all BMC settings. We then use our method to compare four hierarchical evidence accumulation models that have previously been deemed intractable for BMC due to partly implicit likelihoods. In this application, we corroborate evidence for the recently proposed L\'evy flight model of decision-making and show how transfer learning can be leveraged to enhance training efficiency. Reproducible code for all analyses is provided.

Most classification models treat all misclassifications equally. However, different classes may be related, and these hierarchical relationships must be considered in some classification problems. These problems can be addressed by using hierarchical information during training. Unfortunately, this information is not available for all datasets. Many classification-based metric learning methods use class representatives in embedding space to represent different classes. The relationships among the learned class representatives can then be used to estimate class hierarchical structures. If we have a predefined class hierarchy, the learned class representatives can be assessed to determine whether the metric learning model learned semantic distances that match our prior knowledge. In this work, we train a softmax classifier and three metric learning models with several training options on benchmark and real-world datasets. In addition to the standard classification accuracy, we evaluate the hierarchical inference performance by inspecting learned class representatives and the hierarchy-informed performance, i.e., the classification performance, and the metric learning performance by considering predefined hierarchical structures. Furthermore, we investigate how the considered measures are affected by various models and training options. When our proposed ProxyDR model is trained without using predefined hierarchical structures, the hierarchical inference performance is significantly better than that of the popular NormFace model. Additionally, our model enhances some hierarchy-informed performance measures under the same training options. We also found that convolutional neural networks (CNNs) with random weights correspond to the predefined hierarchies better than random chance.

Limited look-ahead game solving for imperfect-information games is the breakthrough that allowed defeating expert humans in large poker. The existing algorithms of this type assume that all players are perfectly rational and do not allow explicit modeling and exploitation of the opponent's flaws. As a result, even very weak opponents can tie or lose only very slowly against these powerful methods. We present the first algorithm that allows incorporating opponent models into limited look-ahead game solving. Using only an approximation of a single (optimal) value function, the algorithm efficiently exploits an arbitrary estimate of the opponent's strategy. It guarantees a bounded worst-case loss for the player. We also show that using existing resolving gadgets is problematic and why we need to keep the previously solved parts of the game. Experiments on three different games show that over half of the maximum possible exploitation is achieved by our algorithm without risking almost any loss.

In recent years, larger and deeper models are springing up and continuously pushing state-of-the-art (SOTA) results across various fields like natural language processing (NLP) and computer vision (CV). However, despite promising results, it needs to be noted that the computations required by SOTA models have been increased at an exponential rate. Massive computations not only have a surprisingly large carbon footprint but also have negative effects on research inclusiveness and deployment on real-world applications. Green deep learning is an increasingly hot research field that appeals to researchers to pay attention to energy usage and carbon emission during model training and inference. The target is to yield novel results with lightweight and efficient technologies. Many technologies can be used to achieve this goal, like model compression and knowledge distillation. This paper focuses on presenting a systematic review of the development of Green deep learning technologies. We classify these approaches into four categories: (1) compact networks, (2) energy-efficient training strategies, (3) energy-efficient inference approaches, and (4) efficient data usage. For each category, we discuss the progress that has been achieved and the unresolved challenges.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司