Music listening in today's digital spaces is highly characterized by the availability of huge music catalogues, accessible by people all over the world. In this scenario, recommender systems are designed to guide listeners in finding tracks and artists that best fit their requests, having therefore the power to influence the diversity of the music they listen to. Albeit several works have proposed new techniques for developing diversity-aware recommendations, little is known about how people perceive diversity while interacting with music recommendations. In this study, we interview several listeners about the role that diversity plays in their listening experience, trying to get a better understanding of how they interact with music recommendations. We recruit the listeners among the participants of a previous quantitative study, where they were confronted with the notion of diversity when asked to identify, from a series of electronic music lists, the most diverse ones according to their beliefs. As a follow-up, in this qualitative study we carry out semi-structured interviews to understand how listeners may assess the diversity of a music list and to investigate their experiences with music recommendation diversity. We report here our main findings on 1) what can influence the diversity assessment of tracks and artists' music lists, and 2) which factors can characterize listeners' interaction with music recommendation diversity.
Modern code review is a critical and indispensable practice in a pull-request development paradigm that prevails in Open Source Software (OSS) development. Finding a suitable reviewer in projects with massive participants thus becomes an increasingly challenging task. Many reviewer recommendation approaches (recommenders) have been developed to support this task which apply a similar strategy, i.e. modeling the review history first then followed by predicting/recommending a reviewer based on the model. Apparently, the better the model reflects the reality in review history, the higher recommender's performance we may expect. However, one typical scenario in a pull-request development paradigm, i.e. one Pull-Request (PR) (such as a revision or addition submitted by a contributor) may have multiple reviewers and they may impact each other through publicly posted comments, has not been modeled well in existing recommenders. We adopted the hypergraph technique to model this high-order relationship (i.e. one PR with multiple reviewers herein) and developed a new recommender, namely HGRec, which is evaluated by 12 OSS projects with more than 87K PRs, 680K comments in terms of accuracy and recommendation distribution. The results indicate that HGRec outperforms the state-of-the-art recommenders on recommendation accuracy. Besides, among the top three accurate recommenders, HGRec is more likely to recommend a diversity of reviewers, which can help to relieve the core reviewers' workload congestion issue. Moreover, since HGRec is based on hypergraph, which is a natural and interpretable representation to model review history, it is easy to accommodate more types of entities and realistic relationships in modern code review scenarios. As the first attempt, this study reveals the potentials of hypergraph on advancing the pragmatic solutions for code reviewer recommendation.
In recent years, the field of explainable AI (XAI) has produced a vast collection of algorithms, providing a useful toolbox for researchers and practitioners to build XAI applications. With the rich application opportunities, explainability is believed to have moved beyond a demand by data scientists or researchers to comprehend the models they develop, to an essential requirement for people to trust and adopt AI deployed in numerous domains. However, explainability is an inherently human-centric property and the field is starting to embrace human-centered approaches. Human-computer interaction (HCI) research and user experience (UX) design in this area are becoming increasingly important. In this chapter, we begin with a high-level overview of the technical landscape of XAI algorithms, then selectively survey our own and other recent HCI works that take human-centered approaches to design, evaluate, and provide conceptual and methodological tools for XAI. We ask the question "what are human-centered approaches doing for XAI" and highlight three roles that they play in shaping XAI technologies by helping navigate, assess and expand the XAI toolbox: to drive technical choices by users' explainability needs, to uncover pitfalls of existing XAI methods and inform new methods, and to provide conceptual frameworks for human-compatible XAI.
Recent developments in Artificial Intelligence (AI) have fueled the emergence of human-AI collaboration, a setting where AI is a coequal partner. Especially in clinical decision-making, it has the potential to improve treatment quality by assisting overworked medical professionals. Even though research has started to investigate the utilization of AI for clinical decision-making, its potential benefits do not imply its adoption by medical professionals. While several studies have started to analyze adoption criteria from a technical perspective, research providing a human-centered perspective with a focus on AI's potential for becoming a coequal team member in the decision-making process remains limited. Therefore, in this work, we identify factors for the adoption of human-AI collaboration by conducting a series of semi-structured interviews with experts in the healthcare domain. We identify six relevant adoption factors and highlight existing tensions between them and effective human-AI collaboration.
With the rapid development of multimedia technology, Augmented Reality (AR) has become a promising next-generation mobile platform. The primary theory underlying AR is human visual confusion, which allows users to perceive the real-world scenes and augmented contents (virtual-world scenes) simultaneously by superimposing them together. To achieve good Quality of Experience (QoE), it is important to understand the interaction between two scenarios, and harmoniously display AR contents. However, studies on how this superimposition will influence the human visual attention are lacking. Therefore, in this paper, we mainly analyze the interaction effect between background (BG) scenes and AR contents, and study the saliency prediction problem in AR. Specifically, we first construct a Saliency in AR Dataset (SARD), which contains 450 BG images, 450 AR images, as well as 1350 superimposed images generated by superimposing BG and AR images in pair with three mixing levels. A large-scale eye-tracking experiment among 60 subjects is conducted to collect eye movement data. To better predict the saliency in AR, we propose a vector quantized saliency prediction method and generalize it for AR saliency prediction. For comparison, three benchmark methods are proposed and evaluated together with our proposed method on our SARD. Experimental results demonstrate the superiority of our proposed method on both of the common saliency prediction problem and the AR saliency prediction problem over benchmark methods. Our data collection methodology, dataset, benchmark methods, and proposed saliency models will be publicly available to facilitate future research.
Blended learning (BL) is a recent tread among many options that can best fit learners' needs, regardless of time and place. This study aimed to discover students' perceptions of BL and the challenges faced by them while using technology. This quantitative study used data gathered from 300 students enrolled in four public universities in the Sindh province of Pakistan. the finding shows that students were compatible with the use of technology, and it has a positive effect on their academic experience. The study also showed that the use of technology encourages peer collaboration. The challenges found include: neither teacher support nor a training program was provided to the students for the course which needed to shift from a traditional face to face paradigm to a blended format, a lake of space lies with skills in a laboratory assistants for the courses with a blended format and as shortage of high tech computer laboratories / computer units to run these courses. Therefore, it is recommended that the authorities must develop and incorporate a comprehensive mechanism for the effective implementation of BL in the learning teaching-learning process heads of the departments should also provide additional computing infrastructure to their departments.
One of the first steps in an academic career, and perhaps the pillar thereof, is completing a PhD under the supervision of a doctoral advisor. While prior work has examined the advisor-advisee relationship and its potential effects on the prospective academic success of the advisee, very little is known on the possibly continued relationship after the advisee has graduated. We harnessed three genealogical and scientometric datasets to identify 3 distinct groups of computer scientists: Highly independent, who cease collaborating with their advisors (almost) instantly upon graduation; Moderately independent, who (quickly) reduce the collaboration rate over ~5 years; and Weakly independent who continue collaborating with their advisors for at least 10 years post-graduation. We find that highly independent researchers are more academically successful than their peers in terms of H-index, i10-index and total number of citations throughout their careers. Moderately independent researchers perform, on average, better than weakly independent researchers, yet the differences are not found to be statistically significant. In addition, both highly and moderately independent researchers are found to have longer academic careers. Interestingly, weakly independent researchers tend to be supervised by more academically successful advisors.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.