Blended learning (BL) is a recent tread among many options that can best fit learners' needs, regardless of time and place. This study aimed to discover students' perceptions of BL and the challenges faced by them while using technology. This quantitative study used data gathered from 300 students enrolled in four public universities in the Sindh province of Pakistan. the finding shows that students were compatible with the use of technology, and it has a positive effect on their academic experience. The study also showed that the use of technology encourages peer collaboration. The challenges found include: neither teacher support nor a training program was provided to the students for the course which needed to shift from a traditional face to face paradigm to a blended format, a lake of space lies with skills in a laboratory assistants for the courses with a blended format and as shortage of high tech computer laboratories / computer units to run these courses. Therefore, it is recommended that the authorities must develop and incorporate a comprehensive mechanism for the effective implementation of BL in the learning teaching-learning process heads of the departments should also provide additional computing infrastructure to their departments.
The performance of Emergency Departments (EDs) is of great importance for any health care system, as they serve as the entry point for many patients. However, among other factors, the variability of patient acuity levels and corresponding treatment requirements of patients visiting EDs imposes significant challenges on decision makers. Balancing waiting times of patients to be first seen by a physician with the overall length of stay over all acuity levels is crucial to maintain an acceptable level of operational performance for all patients. To address those requirements when assigning idle resources to patients, several methods have been proposed in the past, including the Accumulated Priority Queuing (APQ) method. The APQ method linearly assigns priority scores to patients with respect to their time in the system and acuity level. Hence, selection decisions are based on a simple system representation that is used as an input for a selection function. This paper investigates the potential of an Machine Learning (ML) based patient selection method. It assumes that for a large set of training data, including a multitude of different system states, (near) optimal assignments can be computed by a (heuristic) optimizer, with respect to a chosen performance metric, and aims to imitate such optimal behavior when applied to new situations. Thereby, it incorporates a comprehensive state representation of the system and a complex non-linear selection function. The motivation for the proposed approach is that high quality selection decisions may depend on a variety of factors describing the current state of the ED, not limited to waiting times, which can be captured and utilized by the ML model. Results show that the proposed method significantly outperforms the APQ method for a majority of evaluated settings
Virtual telepresence is the future of online communication. Clothing is an essential part of a person's identity and self-expression. Yet, ground truth data of registered clothes is currently unavailable in the required resolution and accuracy for training telepresence models for realistic cloth animation. Here, we propose an end-to-end pipeline for building drivable representations for clothing. The core of our approach is a multi-view patterned cloth tracking algorithm capable of capturing deformations with high accuracy. We further rely on the high-quality data produced by our tracking method to build a Garment Avatar: an expressive and fully-drivable geometry model for a piece of clothing. The resulting model can be animated using a sparse set of views and produces highly realistic reconstructions which are faithful to the driving signals. We demonstrate the efficacy of our pipeline on a realistic virtual telepresence application, where a garment is being reconstructed from two views, and a user can pick and swap garment design as they wish. In addition, we show a challenging scenario when driven exclusively with body pose, our drivable garment avatar is capable of producing realistic cloth geometry of significantly higher quality than the state-of-the-art.
While annotating decent amounts of data to satisfy sophisticated learning models can be cost-prohibitive for many real-world applications. Active learning (AL) and semi-supervised learning (SSL) are two effective, but often isolated, means to alleviate the data-hungry problem. Some recent studies explored the potential of combining AL and SSL to better probe the unlabeled data. However, almost all these contemporary SSL-AL works use a simple combination strategy, ignoring SSL and AL's inherent relation. Further, other methods suffer from high computational costs when dealing with large-scale, high-dimensional datasets. Motivated by the industry practice of labeling data, we propose an innovative Inconsistency-based virtual aDvErsarial Active Learning (IDEAL) algorithm to further investigate SSL-AL's potential superiority and achieve mutual enhancement of AL and SSL, i.e., SSL propagates label information to unlabeled samples and provides smoothed embeddings for AL, while AL excludes samples with inconsistent predictions and considerable uncertainty for SSL. We estimate unlabeled samples' inconsistency by augmentation strategies of different granularities, including fine-grained continuous perturbation exploration and coarse-grained data transformations. Extensive experiments, in both text and image domains, validate the effectiveness of the proposed algorithm, comparing it against state-of-the-art baselines. Two real-world case studies visualize the practical industrial value of applying and deploying the proposed data sampling algorithm.
When neural network model and data are outsourced to cloud server for inference, it is desired to preserve the confidentiality of model and data as the involved parties (i.e., cloud server, model providing client and data providing client) may not trust mutually. Solutions were proposed based on multi-party computation, trusted execution environment (TEE) and leveled or fully homomorphic encryption (LHE/FHE), but their limitations hamper practical application. We propose a new framework based on synergistic integration of LHE and TEE, which enables collaboration among mutually-untrusted three parties, while minimizing the involvement of (relatively) resource-constrained TEE and allowing the full utilization of the untrusted but more resource-rich part of server. We also propose a generic and efficient LHE-based inference scheme as an important performance-determining component of the framework. We implemented/evaluated the proposed system on a moderate platform and show that, our proposed scheme is more applicable/scalable to various settings, and has better performance, compared to the state-of-the-art LHE-based solutions.
This paper introduces a model of multi-unit organizations with either static structures, i.e., they are designed top-down following classical approaches to organizational design, or dynamic structures, i.e., the structures emerge over time from micro-level decisions. In the latter case, the units are capable of learning about the technical interdependencies of the task they face, and they use their knowledge by adapting the task allocation from time to time. In both static and dynamic organizations, searching for actions to increase the performance can either be carried out individually or collaboratively. The results indicate that (i) collaborative search processes can help overcome the adverse effects of inefficient task allocations as long as there is an internal fit with other organizational design elements, and (ii) for dynamic organizations, the emergent task allocation does not necessarily mirror the technical interdependencies of the task the organizations face, even though the same (or even higher) performances are achieved.
There are many examples of cases where access to improved models of human behavior and cognition has allowed creation of robots which can better interact with humans, and not least in road vehicle automation this is a rapidly growing area of research. Human-robot interaction (HRI) therefore provides an important applied setting for human behavior modeling - but given the vast complexity of human behavior, how complete and accurate do these models need to be? Here, we outline some possible ways of thinking about this problem, starting from the suggestion that modelers need to keep the right end goal in sight: A successful human-robot interaction, in terms of safety, performance, and human satisfaction. Efforts toward model completeness and accuracy should be focused on those aspects of human behavior to which interaction success is most sensitive. We emphasise that identifying which those aspects are is a difficult scientific objective in its own right, distinct for each given HRI context. We propose and exemplify an approach to formulating a priori hypotheses on this matter, in cases where robots are to be involved in interactions which currently take place between humans, such as in automated driving. Our perspective also highlights some possible risks of overreliance on machine-learned models of human behavior in HRI, and how to mitigate against those risks.
Several deep neural networks have recently been shown to generate activations similar to those of the brain in response to the same input. These algorithms, however, remain largely implausible: they require (1) extraordinarily large amounts of data, (2) unobtainable supervised labels, (3) textual rather than raw sensory input, and / or (4) implausibly large memory (e.g. thousands of contextual words). These elements highlight the need to identify algorithms that, under these limitations, would suffice to account for both behavioral and brain responses. Focusing on the issue of speech processing, we here hypothesize that self-supervised algorithms trained on the raw waveform constitute a promising candidate. Specifically, we compare a recent self-supervised architecture, Wav2Vec 2.0, to the brain activity of 412 English, French, and Mandarin individuals recorded with functional Magnetic Resonance Imaging (fMRI), while they listened to ~1h of audio books. Our results are four-fold. First, we show that this algorithm learns brain-like representations with as little as 600 hours of unlabelled speech -- a quantity comparable to what infants can be exposed to during language acquisition. Second, its functional hierarchy aligns with the cortical hierarchy of speech processing. Third, different training regimes reveal a functional specialization akin to the cortex: Wav2Vec 2.0 learns sound-generic, speech-specific and language-specific representations similar to those of the prefrontal and temporal cortices. Fourth, we confirm the similarity of this specialization with the behavior of 386 additional participants. These elements, resulting from the largest neuroimaging benchmark to date, show how self-supervised learning can account for a rich organization of speech processing in the brain, and thus delineate a path to identify the laws of language acquisition which shape the human brain.
The COVID-19 pandemic has brought profound change in the daily lives of a large part of the global population during 2020 and 2021. Such changes were mirrored in aspects such as changes to the overall energy consumption, or long periods of sustained inactivity inside public buildings. At the same time, due to the large proliferation of IoT, sensors and smartphones in the past few years, we are able to monitor such changes to a certain degree over time. In this paper, we focus on the effect of the pandemic on school buildings and certain aspects in the operation of schools. Our study is based on data from a number of school buildings equipped with an IoT infrastructure. The buildings were situated in Greece, a country that faced an extended lockdown during both 2020 and 2021. Our results show that as regards power consumption there is room for energy efficiency improvements since there was significant power consumption during lockdown, and that using other sensor data we can also infer interesting points regarding the buildings and activity during the lockdown.
Few sample learning (FSL) is significant and challenging in the field of machine learning. The capability of learning and generalizing from very few samples successfully is a noticeable demarcation separating artificial intelligence and human intelligence since humans can readily establish their cognition to novelty from just a single or a handful of examples whereas machine learning algorithms typically entail hundreds or thousands of supervised samples to guarantee generalization ability. Despite the long history dated back to the early 2000s and the widespread attention in recent years with booming deep learning technologies, little surveys or reviews for FSL are available until now. In this context, we extensively review 200+ papers of FSL spanning from the 2000s to 2019 and provide a timely and comprehensive survey for FSL. In this survey, we review the evolution history as well as the current progress on FSL, categorize FSL approaches into the generative model based and discriminative model based kinds in principle, and emphasize particularly on the meta learning based FSL approaches. We also summarize several recently emerging extensional topics of FSL and review the latest advances on these topics. Furthermore, we highlight the important FSL applications covering many research hotspots in computer vision, natural language processing, audio and speech, reinforcement learning and robotic, data analysis, etc. Finally, we conclude the survey with a discussion on promising trends in the hope of providing guidance and insights to follow-up researches.
Training a deep architecture using a ranking loss has become standard for the person re-identification task. Increasingly, these deep architectures include additional components that leverage part detections, attribute predictions, pose estimators and other auxiliary information, in order to more effectively localize and align discriminative image regions. In this paper we adopt a different approach and carefully design each component of a simple deep architecture and, critically, the strategy for training it effectively for person re-identification. We extensively evaluate each design choice, leading to a list of good practices for person re-identification. By following these practices, our approach outperforms the state of the art, including more complex methods with auxiliary components, by large margins on four benchmark datasets. We also provide a qualitative analysis of our trained representation which indicates that, while compact, it is able to capture information from localized and discriminative regions, in a manner akin to an implicit attention mechanism.