Suppressing vibrations in mechanical systems, usually described by second-order dynamical models, is a challenging task in mechanical engineering in terms of computational resources even nowadays. One remedy is structure-preserving model order reduction to construct easy-to-evaluate surrogates for the original dynamical system having the same structure. In our work, we present an overview of recently developed structure-preserving model reduction methods for second-order systems. These methods are based on modal and balanced truncation in different variants, as well as on rational interpolation. Numerical examples are used to illustrate the effectiveness of all described methods.
This work proposes a new framework of model reduction for parametric complex systems. The framework employs a popular model reduction technique dynamic mode decomposition (DMD), which is capable of combining data-driven learning and physics ingredients based on the Koopman operator theory. In the offline step of the proposed framework, DMD constructs a low-rank linear surrogate model for the high dimensional quantities of interest (QoIs) derived from the (nonlinear) complex high fidelity models (HFMs) of unknown forms. Then in the online step, the resulting local reduced order bases (ROBs) and parametric reduced order models (PROMs) at the training parameter sample points are interpolated to construct a new PROM with the corresponding ROB for a new set of target/test parameter values. The interpolations need to be done on the appropriate manifolds within consistent sets of generalized coordinates. The proposed framework is illustrated by numerical examples for both linear and nonlinear problems. In particular, its advantages in computational costs and accuracy are demonstrated by the comparisons with projection-based proper orthogonal decomposition (POD)-PROM and Kriging.
Photonic accelerators have been intensively studied to provide enhanced information processing capability to benefit from the unique attributes of physical processes. Recently, it has been reported that chaotically oscillating ultrafast time series from a laser, called laser chaos, provides the ability to solve multi-armed bandit (MAB) problems or decision-making problems at GHz order. Furthermore, it has been confirmed that the negatively correlated time-domain structure of laser chaos contributes to the acceleration of decision-making. However, the underlying mechanism of why decision-making is accelerated by correlated time series is unknown. In this paper, we demonstrate a theoretical model to account for the acceleration of decision-making by correlated time sequence. We first confirm the effectiveness of the negative autocorrelation inherent in time series for solving two-armed bandit problems using Fourier transform surrogate methods. We propose a theoretical model that concerns the correlated time series subjected to the decision-making system and the internal status of the system therein in a unified manner, inspired by correlated random walks. We demonstrate that the performance derived analytically by the theory agrees well with the numerical simulations, which confirms the validity of the proposed model and leads to optimal system design. The present study paves the new way for the effectiveness of correlated time series for decision-making, impacting artificial intelligence and other applications.
The detection of 3D objects through a single perspective camera is a challenging issue. The anchor-free and keypoint-based models receive increasing attention recently due to their effectiveness and simplicity. However, most of these methods are vulnerable to occluded and truncated objects. In this paper, a single-stage monocular 3D object detection model is proposed. An instance-segmentation head is integrated into the model training, which allows the model to be aware of the visible shape of a target object. The detection largely avoids interference from irrelevant regions surrounding the target objects. In addition, we also reveal that the popular IoU-based evaluation metrics, which were originally designed for evaluating stereo or LiDAR-based detection methods, are insensitive to the improvement of monocular 3D object detection algorithms. A novel evaluation metric, namely average depth similarity (ADS) is proposed for the monocular 3D object detection models. Our method outperforms the baseline on both the popular and the proposed evaluation metrics while maintaining real-time efficiency.
We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems, which we call dynamical dimension reduction (DDR). In the DDR model, each point is evolved via a nonlinear flow towards a lower-dimensional subspace; the projection onto the subspace gives the low-dimensional embedding. Training the model involves identifying the nonlinear flow and the subspace. Following the equation discovery method, we represent the vector field that defines the flow using a linear combination of dictionary elements, where each element is a pre-specified linear/nonlinear candidate function. A regularization term for the average total kinetic energy is also introduced and motivated by optimal transport theory. We prove that the resulting optimization problem is well-posed and establish several properties of the DDR method. We also show how the DDR method can be trained using a gradient-based optimization method, where the gradients are computed using the adjoint method from optimal control theory. The DDR method is implemented and compared on synthetic and example datasets to other dimension reductions methods, including PCA, t-SNE, and Umap.
The metriplectic formalism is useful for describing complete dynamical systems which conserve energy and produce entropy. This creates challenges for model reduction, as the elimination of high-frequency information will generally not preserve the metriplectic structure which governs long-term stability of the system. Based on proper orthogonal decomposition, a provably convergent metriplectic reduced-order model is formulated which is guaranteed to maintain the algebraic structure necessary for energy conservation and entropy formation. Numerical results on benchmark problems show that the proposed method is remarkably stable, leading to improved accuracy over long time scales at a moderate increase in cost over naive methods.
Gaussian process regression is increasingly applied for learning unknown dynamical systems. In particular, the implicit quantification of the uncertainty of the learned model makes it a promising approach for safety-critical applications. When using Gaussian process regression to learn unknown systems, a commonly considered approach consists of learning the residual dynamics after applying some generic discretization technique, which might however disregard properties of the underlying physical system. Variational integrators are a less common yet promising approach to discretization, as they retain physical properties of the underlying system, such as energy conservation and satisfaction of explicit kinematic constraints. In this work, we present a novel structure-preserving learning-based modelling approach that combines a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression. We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty. The simulative evaluation of the proposed method shows desirable energy conservation properties in accordance with general theoretical results and demonstrates exact constraint satisfaction for constrained dynamical systems.
Bayesian model selection provides a powerful framework for objectively comparing models directly from observed data, without reference to ground truth data. However, Bayesian model selection requires the computation of the marginal likelihood (model evidence), which is computationally challenging, prohibiting its use in many high-dimensional Bayesian inverse problems. With Bayesian imaging applications in mind, in this work we present the proximal nested sampling methodology to objectively compare alternative Bayesian imaging models for applications that use images to inform decisions under uncertainty. The methodology is based on nested sampling, a Monte Carlo approach specialised for model comparison, and exploits proximal Markov chain Monte Carlo techniques to scale efficiently to large problems and to tackle models that are log-concave and not necessarily smooth (e.g., involving l_1 or total-variation priors). The proposed approach can be applied computationally to problems of dimension O(10^6) and beyond, making it suitable for high-dimensional inverse imaging problems. It is validated on large Gaussian models, for which the likelihood is available analytically, and subsequently illustrated on a range of imaging problems where it is used to analyse different choices of dictionary and measurement model.
We have developed an unsupervised anomalous sound detection method for machine condition monitoring that utilizes an auxiliary task -- detecting when the target machine is active. First, we train a model that detects machine activity by using normal data with machine activity labels and then use the activity-detection error as the anomaly score for a given sound clip if we have access to the ground-truth activity labels in the inference phase. If these labels are not available, the anomaly score is calculated through outlier detection on the embedding vectors obtained by the activity-detection model. Solving this auxiliary task enables the model to learn the difference between the target machine sounds and similar background noise, which makes it possible to identify small deviations in the target sounds. Experimental results showed that the proposed method improves the anomaly-detection performance of the conventional method complementarily by means of an ensemble.
Learning accurate classifiers for novel categories from very few examples, known as few-shot image classification, is a challenging task in statistical machine learning and computer vision. The performance in few-shot classification suffers from the bias in the estimation of classifier parameters; however, an effective underlying bias reduction technique that could alleviate this issue in training few-shot classifiers has been overlooked. In this work, we demonstrate the effectiveness of Firth bias reduction in few-shot classification. Theoretically, Firth bias reduction removes the $O(N^{-1})$ first order term from the small-sample bias of the Maximum Likelihood Estimator. Here we show that the general Firth bias reduction technique simplifies to encouraging uniform class assignment probabilities for multinomial logistic classification, and almost has the same effect in cosine classifiers. We derive an easy-to-implement optimization objective for Firth penalized multinomial logistic and cosine classifiers, which is equivalent to penalizing the cross-entropy loss with a KL-divergence between the uniform label distribution and the predictions. Then, we empirically evaluate that it is consistently effective across the board for few-shot image classification, regardless of (1) the feature representations from different backbones, (2) the number of samples per class, and (3) the number of classes. Finally, we show the robustness of Firth bias reduction, in the case of imbalanced data distribution. Our implementation is available at //github.com/ehsansaleh/firth_bias_reduction
Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in //github.com/tsinghua-fib-lab/GNN-Recommender-Systems.