亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We administer a Turing Test to AI Chatbots. We examine how Chatbots behave in a suite of classic behavioral games that are designed to elicit characteristics such as trust, fairness, risk-aversion, cooperation, \textit{etc.}, as well as how they respond to a traditional Big-5 psychological survey that measures personality traits. ChatGPT-4 exhibits behavioral and personality traits that are statistically indistinguishable from a random human from tens of thousands of human subjects from more than 50 countries. Chatbots also modify their behavior based on previous experience and contexts ``as if'' they were learning from the interactions, and change their behavior in response to different framings of the same strategic situation. Their behaviors are often distinct from average and modal human behaviors, in which case they tend to behave on the more altruistic and cooperative end of the distribution. We estimate that they act as if they are maximizing an average of their own and partner's payoffs.

相關內容

Chatbot,聊天機器人。 chatbot是場交互革命,也是一個多技術融合的平臺。上圖給出了構建一個chatbot需要具備的組件,簡單地說chatbot = NLU(Natural Language Understanding) + NLG(Natural Language Generation)。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Learning in games considers how multiple agents maximize their own rewards through repeated games. Memory, an ability that an agent changes his/her action depending on the history of actions in previous games, is often introduced into learning to explore more clever strategies and discuss the decision-making of real agents like humans. However, such games with memory are hard to analyze because they exhibit complex phenomena like chaotic dynamics or divergence from Nash equilibrium. In particular, how asymmetry in memory capacities between agents affects learning in games is still unclear. In response, this study formulates a gradient ascent algorithm in games with asymmetry memory capacities. To obtain theoretical insights into learning dynamics, we first consider a simple case of zero-sum games. We observe complex behavior, where learning dynamics draw a heteroclinic connection from unstable fixed points to stable ones. Despite this complexity, we analyze learning dynamics and prove local convergence to these stable fixed points, i.e., the Nash equilibria. We identify the mechanism driving this convergence: an agent with a longer memory learns to exploit the other, which in turn endows the other's utility function with strict concavity. We further numerically observe such convergence in various initial strategies, action numbers, and memory lengths. This study reveals a novel phenomenon due to memory asymmetry, providing fundamental strides in learning in games and new insights into computing equilibria.

In legal NLP, Case Outcome Classification (COC) must not only be accurate but also trustworthy and explainable. Existing work in explainable COC has been limited to annotations by a single expert. However, it is well-known that lawyers may disagree in their assessment of case facts. We hence collect a novel dataset RAVE: Rationale Variation in ECHR1, which is obtained from two experts in the domain of international human rights law, for whom we observe weak agreement. We study their disagreements and build a two-level task-independent taxonomy, supplemented with COC-specific subcategories. To our knowledge, this is the first work in the legal NLP that focuses on human label variation. We quantitatively assess different taxonomy categories and find that disagreements mainly stem from underspecification of the legal context, which poses challenges given the typically limited granularity and noise in COC metadata. We further assess the explainablility of SOTA COC models on RAVE and observe limited agreement between models and experts. Overall, our case study reveals hitherto underappreciated complexities in creating benchmark datasets in legal NLP that revolve around identifying aspects of a case's facts supposedly relevant to its outcome.

Additively Separable Hedonic Game (ASHG) are coalition-formation games where we are given a graph whose vertices represent $n$ selfish agents and the weight of each edge $uv$ denotes how much agent $u$ gains (or loses) when she is placed in the same coalition as agent $v$. We revisit the computational complexity of the well-known notion of core stability of ASHGs, where the goal is to construct a partition of the agents into coalitions such that no group of agents would prefer to diverge from the given partition and form a new (blocking) coalition. Since both finding a core stable partition and verifying that a given partition is core stable are intractable problems ($\Sigma_2^p$-complete and coNP-complete respectively) we study their complexity from the point of view of structural parameterized complexity, using standard graph-theoretic parameters, such as treewidth.

We present, PEGASUS, a method for constructing personalized generative 3D face avatars from monocular video sources. As a compositional generative model, our model enables disentangled controls to selectively alter the facial attributes (e.g., hair or nose) of the target individual, while preserving the identity. We present two key approaches to achieve this goal. First, we present a method to construct a person-specific generative 3D avatar by building a synthetic video collection of the target identity with varying facial attributes, where the videos are synthesized by borrowing parts from diverse individuals from other monocular videos. Through several experiments, we demonstrate the superior performance of our approach by generating unseen attributes with high realism. Subsequently, we introduce a zero-shot approach to achieve the same generative modeling more efficiently by leveraging a previously constructed personalized generative model.

The work of neural retrieval so far focuses on ranking short texts and is challenged with long documents. There are many cases where the users want to find a relevant passage within a long document from a huge corpus, e.g. Wikipedia articles, research papers, etc. We propose and name this task \emph{Document-Aware Passage Retrieval} (DAPR). While analyzing the errors of the State-of-The-Art (SoTA) passage retrievers, we find the major errors (53.5\%) are due to missing document context. This drives us to build a benchmark for this task including multiple datasets from heterogeneous domains. In the experiments, we extend the SoTA passage retrievers with document context via (1) hybrid retrieval with BM25 and (2) contextualized passage representations, which inform the passage representation with document context. We find despite that hybrid retrieval performs the strongest on the mixture of the easy and the hard queries, it completely fails on the hard queries that require document-context understanding. On the other hand, contextualized passage representations (e.g. prepending document titles) achieve good improvement on these hard queries, but overall they also perform rather poorly. Our created benchmark enables future research on developing and comparing retrieval systems for the new task. The code and the data are available at //github.com/UKPLab/arxiv2023-dapr.

A mediator observes no-regret learners playing an extensive-form game repeatedly across $T$ rounds. The mediator attempts to steer players toward some desirable predetermined equilibrium by giving (nonnegative) payments to players. We call this the steering problem. The steering problem captures problems several problems of interest, among them equilibrium selection and information design (persuasion). If the mediator's budget is unbounded, steering is trivial because the mediator can simply pay the players to play desirable actions. We study two bounds on the mediator's payments: a total budget and a per-round budget. If the mediator's total budget does not grow with $T$, we show that steering is impossible. However, we show that it is enough for the total budget to grow sublinearly with $T$, that is, for the average payment to vanish. When players' full strategies are observed at each round, we show that constant per-round budgets permit steering. In the more challenging setting where only trajectories through the game tree are observable, we show that steering is impossible with constant per-round budgets in general extensive-form games, but possible in normal-form games or if the per-round budget may itself depend on $T$. We also show how our results can be generalized to the case when the equilibrium is being computed online while steering is happening. We supplement our theoretical positive results with experiments highlighting the efficacy of steering in large games.

In the field of robotics and automation, navigation systems based on Large Language Models (LLMs) have recently shown impressive performance. However, the security aspects of these systems have received relatively less attention. This paper pioneers the exploration of vulnerabilities in LLM-based navigation models in urban outdoor environments, a critical area given the technology's widespread application in autonomous driving, logistics, and emergency services. Specifically, we introduce a novel Navigational Prompt Suffix (NPS) Attack that manipulates LLM-based navigation models by appending gradient-derived suffixes to the original navigational prompt, leading to incorrect actions. We conducted comprehensive experiments on an LLMs-based navigation model that employs various LLMs for reasoning. Our results, derived from the Touchdown and Map2Seq street-view datasets under both few-shot learning and fine-tuning configurations, demonstrate notable performance declines across three metrics in the face of both white-box and black-box attacks. These results highlight the generalizability and transferability of the NPS Attack, emphasizing the need for enhanced security in LLM-based navigation systems. As an initial countermeasure, we propose the Navigational Prompt Engineering (NPE) Defense strategy, concentrating on navigation-relevant keywords to reduce the impact of adversarial suffixes. While initial findings indicate that this strategy enhances navigational safety, there remains a critical need for the wider research community to develop stronger defense methods to effectively tackle the real-world challenges faced by these systems.

Data plays a fundamental role in the training of Large Language Models (LLMs). Effective data management, particularly in the formulation of a well-suited training dataset, holds significance for enhancing model performance and improving training efficiency during pretraining and supervised fine-tuning phases. Despite the considerable importance of data management, the current research community still falls short in providing a systematic analysis of the rationale behind management strategy selection, its consequential effects, methodologies for evaluating curated datasets, and the ongoing pursuit of improved strategies. Consequently, the exploration of data management has attracted more and more attention among the research community. This survey provides a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs, covering various noteworthy aspects of data management strategy design: data quantity, data quality, domain/task composition, etc. Looking toward the future, we extrapolate existing challenges and outline promising directions for development in this field. Therefore, this survey serves as a guiding resource for practitioners aspiring to construct powerful LLMs through effective data management practices. The collection of the latest papers is available at //github.com/ZigeW/data_management_LLM.

Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.

Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.

北京阿比特科技有限公司