Multi-agent Reinforcement Learning (MARL) based traffic signal control becomes a popular research topic in recent years. Most existing MARL approaches tend to learn the optimum control strategies in a decentralised manner by considering communication among neighbouring intersections. However, the non-stationary property in MARL may lead to extremely slow or even failure of convergence, especially when the number of intersections becomes large. One of the existing methods is to partition the whole network into several regions, each of which utilizes a centralized RL framework to speed up the convergence rate. However, there are two challenges for this strategy: the first one is how to get a flexible partition and the second one is how to search for the optimal joint actions for a region of intersections. In this paper, we propose a novel training framework where our region partitioning rule is based on the adjacency between the intersections and propose Dynamic Branching Dueling Q-Network (DBDQ) to search for optimal joint action efficiently and to maximize the regional reward. The experimental results with both real datasets and synthetic datasets demonstrate the superiority of our framework over other existing frameworks.
Offline reinforcement learning (RL) have received rising interest due to its appealing data efficiency. The present study addresses behavior estimation, a task that lays the foundation of many offline RL algorithms. Behavior estimation aims at estimating the policy with which training data are generated. In particular, this work considers a scenario where the data are collected from multiple sources. In this case, neglecting data heterogeneity, existing approaches for behavior estimation suffers from behavior misspecification. To overcome this drawback, the present study proposes a latent variable model to infer a set of policies from data, which allows an agent to use as behavior policy the policy that best describes a particular trajectory. This model provides with a agent fine-grained characterization for multi-source data and helps it overcome behavior misspecification. This work also proposes a learning algorithm for this model and illustrates its practical usage via extending an existing offline RL algorithm. Lastly, with extensive evaluation this work confirms the existence of behavior misspecification and the efficacy of the proposed model.
Deep learning is experiencing a rise in foundation models that are expected to lead in various fields. The massive number of parameters necessitates the use of tensor model parallelism (TMP) in foundation model training. However, TMP requires frequent communication operations which significantly reduces the training efficiency. In this paper, we present Oases, an automated TMP method with overlapped communication to accelerate foundation model training. Oases proposes a fine-grained training schedule to maximize overlapping communication and computation operations that have data dependence. Additionally, we design the Oases planner that searches for the best model parallel strategy to achieve further accelerations. Unlike existing methods, Oases planner is specifically tailored to model the cost of overlapped communication-computation operations. We evaluate Oases on various model settings and train environments, and compare Oases to four stat-of-the-art implementations. Experimental results demonstrate that Oases achieves speedups of 1.01--1.48X over the fastest baseline, and speedups of up to 1.9X over Megatron-LM.
Cooperative multi-agent reinforcement learning (MARL) is a challenging task, as agents must learn complex and diverse individual strategies from a shared team reward. However, existing methods struggle to distinguish and exploit important individual experiences, as they lack an effective way to decompose the team reward into individual rewards. To address this challenge, we propose DIFFER, a powerful theoretical framework for decomposing individual rewards to enable fair experience replay in MARL. By enforcing the invariance of network gradients, we establish a partial differential equation whose solution yields the underlying individual reward function. The individual TD-error can then be computed from the solved closed-form individual rewards, indicating the importance of each piece of experience in the learning task and guiding the training process. Our method elegantly achieves an equivalence to the original learning framework when individual experiences are homogeneous, while also adapting to achieve more muscular efficiency and fairness when diversity is observed.Our extensive experiments on popular benchmarks validate the effectiveness of our theory and method, demonstrating significant improvements in learning efficiency and fairness.
Letting robots emulate human behavior has always posed a challenge, particularly in scenarios involving multiple robots. In this paper, we presented a framework aimed at achieving multi-agent reinforcement learning for robot control in construction tasks. The construction industry often necessitates complex interactions and coordination among multiple robots, demanding a solution that enables effective collaboration and efficient task execution. Our proposed framework leverages the principles of proximal policy optimization and developed a multi-agent version to enable the robots to acquire sophisticated control policies. We evaluated the effectiveness of our framework by learning four different collaborative tasks in the construction environments. The results demonstrated the capability of our approach in enabling multiple robots to learn and adapt their behaviors in complex construction tasks while effectively preventing collisions. Results also revealed the potential of combining and exploring the advantages of reinforcement learning algorithms and inverse kinematics. The findings from this research contributed to the advancement of multi-agent reinforcement learning in the domain of construction robotics. By enabling robots to behave like human counterparts and collaborate effectively, we pave the way for more efficient, flexible, and intelligent construction processes.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.
We introduce DeepNash, an autonomous agent capable of learning to play the imperfect information game Stratego from scratch, up to a human expert level. Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered. This popular game has an enormous game tree on the order of $10^{535}$ nodes, i.e., $10^{175}$ times larger than that of Go. It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes). Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome. Episodes are long, with often hundreds of moves before a player wins, and situations in Stratego can not easily be broken down into manageably-sized sub-problems as in poker. For these reasons, Stratego has been a grand challenge for the field of AI for decades, and existing AI methods barely reach an amateur level of play. DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego via self-play. The Regularised Nash Dynamics (R-NaD) algorithm, a key component of DeepNash, converges to an approximate Nash equilibrium, instead of 'cycling' around it, by directly modifying the underlying multi-agent learning dynamics. DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform, competing with human expert players.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.