Decentralized applications (dApps) consist of smart contracts that run on blockchains and clients that model collaborating parties. dApps are used to model financial and legal business functionality. Today, contracts and clients are written as separate programs -- in different programming languages -- communicating via send and receive operations. This makes distributed program flow awkward to express and reason about, increasing the potential for mismatches in the client-contract interface, which can be exploited by malicious clients, potentially leading to huge financial losses. In this paper, we present Prisma, a language for tierless decentralized applications, where the contract and its clients are defined in one unit and pairs of send and receive actions that "belong together" are encapsulated into a single direct-style operation, which is executed differently by sending and receiving parties. This enables expressing distributed program flow via standard control flow and renders mismatching communication impossible. We prove formally that our compiler preserves program behavior in presence of an attacker controlling the client code. We systematically compare Prisma with mainstream and advanced programming models for dApps and provide empirical evidence for its expressiveness and performance.
Federal administrative data, such as tax data, are invaluable for research, but because of privacy concerns, access to these data is typically limited to select agencies and a few individuals. An alternative to sharing microlevel data is to allow individuals to query statistics without directly accessing the confidential data. This paper studies the feasibility of using differentially private (DP) methods to make certain queries while preserving privacy. We also include new methodological adaptations to existing DP regression methods for using new data types and returning standard error estimates. We define feasibility as the impact of DP methods on analyses for making public policy decisions and the queries accuracy according to several utility metrics. We evaluate the methods using Internal Revenue Service data and public-use Current Population Survey data and identify how specific data features might challenge some of these methods. Our findings show that DP methods are feasible for simple, univariate statistics but struggle to produce accurate regression estimates and confidence intervals. To the best of our knowledge, this is the first comprehensive statistical study of DP regression methodology on real, complex datasets, and the findings have significant implications for the direction of a growing research field and public policy.
Ongoing advances in force field and computer hardware development enable the use of molecular dynamics (MD) to simulate increasingly complex systems with the ultimate goal of reaching cellular complexity. At the same time, rational design by high-throughput (HT) simulations is another forefront of MD. In these areas, the Martini coarse-grained force field, especially the latest version (i.e. v3), is being actively explored because it offers enhanced spatial-temporal resolution. However, the automation tools for preparing simulations with the Martini force field, accompanying the previous version, were not designed for HT simulations or studies of complex cellular systems. Therefore, they become a major limiting factor. To address these shortcomings, we present the open-source Vermouth python library. Vermouth is designed to become the unified framework for developing programs, which prepare, run, and analyze Martini simulations of complex systems. To demonstrate the power of the Vermouth library, the Martinize2 program is showcased as a generalization of the martinize script, originally aimed to set up simulations of proteins. In contrast to the previous version, Martinize2 automatically handles protonation states in proteins and post-translation modifications, offers more options to fine-tune structural biases such as the elastic network, and can convert non-protein molecules such as ligands. Finally, Martinize2 is used in two high-complexity benchmarks. The entire I-TASSER protein template database as well as a subset of 200,000 structures from the AlphaFold Protein Structure Database are converted to CG resolution and we illustrate how the checks on input structure quality can safeguard high-throughput applications.
Federated Learning (FL) is the privacy-preserving machine learning paradigm which collaboratively trains a model across millions of devices. Simulated environments are fundamental to large-scale FL research, allowing researchers to quickly test new ideas to solve system and statistical heterogeneity issues. This work proposes \emph{Pollen}, a novel resource-aware system capable of speeding up FL simulations by efficiently placing clients across distributed and heterogeneous hardware. We propose minimising server-GPU communication and using an efficient client placement policy based on the inherent trade-offs of FL client placement on heterogeneous GPUs. These trade-offs are explored experimentally. This exploration has been conducted via relevant baselines on three popular FL tasks: image classification, speech recognition and text generation. We compare \emph{Pollen} to existing ad-hoc FL frameworks, such as Flower, Flute and FedScale, and show performance gains of $50\%$ to $400\%$.
Social mediator robots facilitate human-human interactions by producing behavior strategies that positively influence how humans interact with each other in social settings. As robots for social mediation gain traction in the field of human-human-robot interaction, their ability to "understand" the humans in their environments becomes crucial. This objective requires models of human understanding that consider multiple humans in an interaction as a collective entity and represent the group dynamics that exist among its members. Group dynamics are defined as the influential actions, processes, and changes that occur within and between group interactants. Since an individual's behavior may be deeply influenced by their interactions with other group members, the social dynamics existing within a group can influence the behaviors, attitudes, and opinions of each individual and the group as a whole. Therefore, models of group dynamics are critical for a social mediator robot to be effective in its role. In this paper, we survey existing models of group dynamics and categorize them into models of social dominance, affect, social cohesion, conflict resolution, and engagement. We highlight the multimodal features these models utilize, and emphasize the importance of capturing the interpersonal aspects of a social interaction. Finally, we make a case for models of relational affect as an approach that may be able to capture a representation of human-human interactions that can be useful for social mediation.
Federated learning is a decentralized machine learning paradigm that allows multiple clients to collaborate by leveraging local computational power and the models transmission. This method reduces the costs and privacy concerns associated with centralized machine learning methods while ensuring data privacy by distributing training data across heterogeneous devices. On the other hand, federated learning has the drawback of data leakage due to the lack of privacy-preserving mechanisms employed during storage, transfer, and sharing, thus posing significant risks to data owners and suppliers. Blockchain technology has emerged as a promising technology for offering secure data-sharing platforms in federated learning, especially in Industrial Internet of Things (IIoT) settings. This survey aims to compare the performance and security of various data privacy mechanisms adopted in blockchain-based federated learning architectures. We conduct a systematic review of existing literature on secure data-sharing platforms for federated learning provided by blockchain technology, providing an in-depth overview of blockchain-based federated learning, its essential components, and discussing its principles, and potential applications. The primary contribution of this survey paper is to identify critical research questions and propose potential directions for future research in blockchain-based federated learning.
Smart contracts are critical financial instruments, and their security is of utmost importance. However, smart contract programs are difficult to fuzz due to the persistent blockchain state behind all transactions. Mutating sequences of transactions are complex and often lead to a suboptimal exploration for both input and program spaces. In this paper, we introduce a novel snapshot-based fuzzer ItyFuzz for testing smart contracts. In ItyFuzz, instead of storing sequences of transactions and mutating from them, we snapshot states and singleton transactions. To explore interesting states, ItyFuzz introduces a dataflow waypoint mechanism to identify states with more potential momentum. ItyFuzz also incorporates comparison waypoints to prune the space of states. By maintaining snapshots of the states, ItyFuzz can synthesize concrete exploits like reentrancy attacks quickly. Because ItyFuzz has second-level response time to test a smart contract, it can be used for on-chain testing, which has many benefits compared to local development testing. Finally, we evaluate ItyFuzz on real-world smart contracts and some hacked on-chain DeFi projects. ItyFuzz outperforms existing fuzzers in terms of instructional coverage and can find and generate realistic exploits for on-chain projects quickly.
Dependency trees have proven to be a very successful model to represent the syntactic structure of sentences of human languages. In these structures, vertices are words and edges connect syntactically-dependent words. The tendency of these dependencies to be short has been demonstrated using random baselines for the sum of the lengths of the edges or its variants. A ubiquitous baseline is the expected sum in projective orderings (wherein edges do not cross and the root word of the sentence is not covered by any edge), that can be computed in time $O(n)$. Here we focus on a weaker formal constraint, namely planarity. In the theoretical domain, we present a characterization of planarity that, given a sentence, yields either the number of planar permutations or an efficient algorithm to generate uniformly random planar permutations of the words. We also show the relationship between the expected sum in planar arrangements and the expected sum in projective arrangements. In the domain of applications, we derive a $O(n)$-time algorithm to calculate the expected value of the sum of edge lengths. We also apply this research to a parallel corpus and find that the gap between actual dependency distance and the random baseline reduces as the strength of the formal constraint on dependency structures increases, suggesting that formal constraints absorb part of the dependency distance minimization effect. Our research paves the way for replicating past research on dependency distance minimization using random planar linearizations as random baseline.
The Internet of Energy (IoE) is a distributed paradigm that leverages smart networks and distributed system technologies to enable decentralized energy systems. In contrast to the traditional centralized energy systems, distributed Energy Internet systems comprise multiple components and communication requirements that demand innovative technologies for decentralization, reliability, efficiency, and security. Recent advances in blockchain architectures, smart contracts, and distributed federated learning technologies have opened up new opportunities for realizing decentralized Energy Internet services. In this paper, we present a comprehensive analysis and classification of state-of-the-art solutions that employ blockchain, smart contracts, and federated learning for the IoE domains. Specifically, we identify four representative system models and discuss their key aspects. These models demonstrate the diverse ways in which blockchain, smart contracts, and federated learning can be integrated to support the main domains of IoE, namely distributed energy trading and sharing, smart microgrid energy networks, and electric and connected vehicle management. Furthermore, we provide a detailed comparison of the different levels of decentralization, the advantages of federated learning, and the benefits of using blockchain for the IoE systems. Additionally, we identify open issues and areas for future research for integrating federated learning and blockchain in the Internet of Energy domains.
Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.