亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sim2Real transfer has gained popularity because it helps transfer from inexpensive simulators to real world. This paper presents a novel system that fuses components in a traditional \textit{World Model} into a robust system, trained entirely within a simulator, that \textit{Zero-Shot} transfers to the real world. To facilitate transfer, we use an intermediary representation that are based on \textit{Bird's Eye View (BEV)} images. Thus, our robot learns to navigate in a simulator by first learning to translate from complex \textit{First-Person View (FPV)} based RGB images to BEV representations, then learning to navigate using those representations. Later, when tested in the real world, the robot uses the perception model that translates FPV-based RGB images to embeddings that are used by the downstream policy. The incorporation of state-checking modules using \textit{Anchor images} and \textit{Mixture Density LSTM} not only interpolates uncertain and missing observations but also enhances the robustness of the model when exposed to the real-world environment. We trained the model using data collected using a \textit{Differential drive} robot in the CARLA simulator. Our methodology's effectiveness is shown through the deployment of trained models onto a \textit{Real world Differential drive} robot. Lastly we release a comprehensive codebase, dataset and models for training and deployment that are available to the public.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 核化 · 模型評估 · 卷積核 · Networking ·
2023 年 12 月 15 日

Despite the decomposition of convolutional kernels for lightweight CNNs being well studied, existing works that rely on tensor network diagrams or hyperdimensional abstraction lack geometry intuition. This work devises a new perspective by linking a 3D-reshaped kernel tensor to its various slice-wise and rank-1 decompositions, permitting a straightforward connection between various tensor approximations and efficient CNN modules. Specifically, it is discovered that a pointwise-depthwise-pointwise (PDP) configuration constitutes a viable construct for lightweight CNNs. Moreover, a novel link to the latest ShiftNet is established, inspiring a first-ever shift layer pruning that achieves nearly 50% compression with < 1% drop in accuracy for ShiftResNet.

This paper presents a novel vision-based proprioception approach for a soft robotic finger capable of estimating and reconstructing tactile interactions in terrestrial and aquatic environments. The key to this system lies in the finger's unique metamaterial structure, which facilitates omni-directional passive adaptation during grasping, protecting delicate objects across diverse scenarios. A compact in-finger camera captures high-framerate images of the finger's deformation during contact, extracting crucial tactile data in real time. We present a method of the volumetric discretized model of the soft finger and use the geometry constraints captured by the camera to find the optimal estimation of the deformed shape. The approach is benchmarked with a motion-tracking system with sparse markers and a haptic device with dense measurements. Both results show state-of-the-art accuracies, with a median error of 1.96 mm for overall body deformation, corresponding to 2.1$\%$ of the finger's length. More importantly, the state estimation is robust in both on-land and underwater environments as we demonstrate its usage for underwater object shape sensing. This combination of passive adaptation and real-time tactile sensing paves the way for amphibious robotic grasping applications.

This paper presents a motion planning algorithm for quadruped locomotion based on density functions. We decompose the locomotion problem into a high-level density planner and a model predictive controller (MPC). Due to density functions having a physical interpretation through the notion of occupancy, it is intuitive to represent the environment with safety constraints. Hence, there is an ease of use to constructing the planning problem with density. The proposed method uses a simplified model of the robot into an integrator system, where the high-level plan is in a feedback form formulated through an analytically constructed density function. We then use the MPC to optimize the reference trajectory, in which a low-level PID controller is used to obtain the torque level control. The overall framework is implemented in simulation, demonstrating our feedback density planner for legged locomotion. The implementation of work is available at \url{//github.com/AndrewZheng-1011/legged_planner}

We propose a novel framework DropTop that suppresses the shortcut bias in online continual learning (OCL) while being adaptive to the varying degree of the shortcut bias incurred by continuously changing environment. By the observed high-attention property of the shortcut bias, highly-activated features are considered candidates for debiasing. More importantly, resolving the limitation of the online environment where prior knowledge and auxiliary data are not ready, two novel techniques -- feature map fusion and adaptive intensity shifting -- enable us to automatically determine the appropriate level and proportion of the candidate shortcut features to be dropped. Extensive experiments on five benchmark datasets demonstrate that, when combined with various OCL algorithms, DropTop increases the average accuracy by up to 10.4% and decreases the forgetting by up to 63.2%.

Automatic recognition of disordered speech remains a highly challenging task to date due to data scarcity. This paper presents a reinforcement learning (RL) based on-the-fly data augmentation approach for training state-of-the-art PyChain TDNN and end-to-end Conformer ASR systems on such data. The handcrafted temporal and spectral mask operations in the standard SpecAugment method that are task and system dependent, together with additionally introduced minimum and maximum cut-offs of these time-frequency masks, are now automatically learned using an RNN-based policy controller and tightly integrated with ASR system training. Experiments on the UASpeech corpus suggest the proposed RL-based data augmentation approach consistently produced performance superior or comparable that obtained using expert or handcrafted SpecAugment policies. Our RL auto-augmented PyChain TDNN system produced an overall WER of 28.79% on the UASpeech test set of 16 dysarthric speakers.

Autoregressive moving average (ARMA) models are frequently used to analyze time series data. Despite the popularity of these models, algorithms for fitting ARMA models have weaknesses that are not well known. We provide a summary of parameter estimation via maximum likelihood and discuss common pitfalls that may lead to sub-optimal parameter estimates. We propose a random restart algorithm for parameter estimation that frequently yields higher likelihoods than traditional maximum likelihood estimation procedures. We then investigate the parameter uncertainty of maximum likelihood estimates, and propose the use of profile confidence intervals as a superior alternative to intervals derived from the Fisher's information matrix. Through a series of simulation studies, we demonstrate the efficacy of our proposed algorithm and the improved nominal coverage of profile confidence intervals compared to the normal approximation based on Fisher's Information.

Reinforcement Learning (RL) systems can be complex and non-interpretable, making it challenging for non-AI experts to understand or intervene in their decisions. This is due in part to the sequential nature of RL in which actions are chosen because of future rewards. However, RL agents discard the qualitative features of their training, making it difficult to recover user-understandable information for "why" an action is chosen. We propose a technique, Experiential Explanations, to generate counterfactual explanations by training influence predictors along with the RL policy. Influence predictors are models that learn how sources of reward affect the agent in different states, thus restoring information about how the policy reflects the environment. A human evaluation study revealed that participants presented with experiential explanations were better able to correctly guess what an agent would do than those presented with other standard types of explanation. Participants also found that experiential explanations are more understandable, satisfying, complete, useful, and accurate. The qualitative analysis provides insights into the factors of experiential explanations that are most useful.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.

北京阿比特科技有限公司