This research aims to explore various methods for assessing user feedback in mixed-initiative conversational search (CS) systems. While CS systems enjoy profuse advancements across multiple aspects, recent research fails to successfully incorporate feedback from the users. One of the main reasons for that is the lack of system-user conversational interaction data. To this end, we propose a user simulator-based framework for multi-turn interactions with a variety of mixed-initiative CS systems. Specifically, we develop a user simulator, dubbed ConvSim, that, once initialized with an information need description, is capable of providing feedback to a system's responses, as well as answering potential clarifying questions. Our experiments on a wide variety of state-of-the-art passage retrieval and neural re-ranking models show that effective utilization of user feedback can lead to 16% retrieval performance increase in terms of nDCG@3. Moreover, we observe consistent improvements as the number of feedback rounds increases (35% relative improvement in terms of nDCG@3 after three rounds). This points to a research gap in the development of specific feedback processing modules and opens a potential for significant advancements in CS. To support further research in the topic, we release over 30,000 transcripts of system-simulator interactions based on well-established CS datasets.
Enhancing AI systems with efficient communication skills that align with human understanding is crucial for their effective assistance to human users. Proactive initiatives from the system side are needed to discern specific circumstances and interact aptly with users to solve these scenarios. In this research, we opt for a collective building assignment taken from the Minecraft dataset. Our proposed method employs language modeling to enhance task understanding through state-of-the-art (SOTA) methods using language models. These models focus on grounding multi-modal understandinging and task-oriented dialogue comprehension tasks. This focus aids in gaining insights into how well these models interpret and respond to a variety of inputs and tasks. Our experimental results provide compelling evidence of the superiority of our proposed method. This showcases a substantial improvement and points towards a promising direction for future research in this domain.
This paper presents a method for building a personalized open-domain dialogue system to address the $\textit{WWH}$ ($\textit{WHAT}$, $\textit{WHEN}$, and $\textit{HOW}$) problem for natural response generation in a commercial setting, where personalized dialogue responses are heavily interleaved with casual response turns. The proposed approach involves weighted dataset blending, negative persona information augmentation methods, and the design of personalized conversation datasets to address the challenges of $\textit{WWH}$ in personalized, open-domain dialogue systems. Our work effectively balances dialogue fluency and tendency to ground, while also introducing a response-type label to improve the controllability and explainability of the grounded responses. The combination of these methods leads to more fluent conversations, as evidenced by subjective human evaluations as well as objective evaluations.
Conversational AI systems exhibit a level of human-like behavior that promises to have profound impacts on many aspects of daily life -- how people access information, create content, and seek social support. Yet these models have also shown a propensity for biases, offensive language, and conveying false information. Consequently, understanding and moderating safety risks in these models is a critical technical and social challenge. Perception of safety is intrinsically subjective, where many factors -- often intersecting -- could determine why one person may consider a conversation with a chatbot safe and another person could consider the same conversation unsafe. In this work, we focus on demographic factors that could influence such diverse perceptions. To this end, we contribute an analysis using Bayesian multilevel modeling to explore the connection between rater demographics and how raters report safety of conversational AI systems. We study a sample of 252 human raters stratified by gender, age group, race/ethnicity group, and locale. This rater pool provided safety labels for 1,340 human-chatbot conversations. Our results show that intersectional effects involving demographic characteristics such as race/ethnicity, gender, and age, as well as content characteristics, such as degree of harm, all play significant roles in determining the safety of conversational AI systems. For example, race/ethnicity and gender show strong intersectional effects, particularly among South Asian and East Asian women. We also find that conversational degree of harm impacts raters of all race/ethnicity groups, but that Indigenous and South Asian raters are particularly sensitive to this harm. Finally, we observe the effect of education is uniquely intersectional for Indigenous raters, highlighting the utility of multilevel frameworks for uncovering underrepresented social perspectives.
Intertemporal choices involve making decisions that require weighing the costs in the present against the benefits in the future. One specific type of intertemporal choice is the decision between purchasing an individual item or opting for a bundle that includes that item. Previous research assumes that individuals have accurate expectations of the factors involved in these choices. However, in reality, users' perceptions of these factors are often biased, leading to irrational and suboptimal decision-making. In this work, we specifically focus on two commonly observed biases: projection bias and the reference-point effect. To address these biases, we propose a novel bias-embedded preference model called Probe. The Probe incorporates a weight function to capture users' projection bias and a value function to account for the reference-point effect, and introduce prospect theory from behavioral economics to combine the weight and value functions. This allows us to determine the probability of users selecting the bundle or a single item. We provide a thorough theoretical analysis to demonstrate the impact of projection bias on the design of bundle sales strategies. Through experimental results, we show that the proposed Probe model outperforms existing methods and contributes to a better understanding of users' irrational behaviors in bundle purchases. This investigation can facilitate a deeper comprehension of users' decision-making mechanisms, enable the provision of personalized services, and assist users in making more rational and optimal decisions.
Revision behavior in adaptive writing support systems is an important and relatively new area of research that can improve the design and effectiveness of these tools, and promote students' self-regulated learning (SRL). Understanding how these tools are used is key to improving them to better support learners in their writing and learning processes. In this paper, we present a novel pipeline with insights into the revision behavior of students at scale. We leverage a data set of two groups using an adaptive writing support tool in an educational setting. With our novel pipeline, we show that the tool was effective in promoting revision among the learners. Depending on the writing feedback, we were able to analyze different strategies of learners when revising their texts, we found that users of the exemplary case improved over time and that females tend to be more efficient. Our research contributes a pipeline for measuring SRL behaviors at scale in writing tasks (i.e., engagement or revision behavior) and informs the design of future adaptive writing support systems for education, with the goal of enhancing their effectiveness in supporting student writing. The source code is available at //github.com/lucamouchel/Understanding-Revision-Behavior.
Automated audio captioning (AAC) is an important cross-modality translation task, aiming at generating descriptions for audio clips. However, captions generated by previous AAC models have faced ``false-repetition'' errors due to the training objective. In such scenarios, we propose a new task of AAC error correction and hope to reduce such errors by post-processing AAC outputs. To tackle this problem, we use observation-based rules to corrupt captions without errors, for pseudo grammatically-erroneous sentence generation. One pair of corrupted and clean sentences can thus be used for training. We train a neural network-based model on the synthetic error dataset and apply the model to correct real errors in AAC outputs. Results on two benchmark datasets indicate that our approach significantly improves fluency while maintaining semantic information.
The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has, without exaggeration, revolutionized the fields of natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage ranking architectures and learned dense representations that attempt to perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond the typical sentence-by-sentence processing approaches used in NLP, and techniques for addressing the tradeoff between effectiveness (result quality) and efficiency (query latency). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading.
Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.
The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.
Most of the internet today is composed of digital media that includes videos and images. With pixels becoming the currency in which most transactions happen on the internet, it is becoming increasingly important to have a way of browsing through this ocean of information with relative ease. YouTube has 400 hours of video uploaded every minute and many million images are browsed on Instagram, Facebook, etc. Inspired by recent advances in the field of deep learning and success that it has gained on various problems like image captioning and, machine translation , word2vec , skip thoughts, etc, we present DeepSeek a natural language processing based deep learning model that allows users to enter a description of the kind of images that they want to search, and in response the system retrieves all the images that semantically and contextually relate to the query. Two approaches are described in the following sections.