As the French, European and worldwide populations are aging, there is a strong interest for new systems that guarantee a reliable and privacy preserving home monitoring for frailty prevention. This work is a part of a global environmental audio analysis system which aims to help identification of Activities of Daily Life (ADL) through human and everyday life sounds recognition, speech presence and number of speakers detection. The focus is made on the number of speakers detection. In this article, we present how recent advances in sound processing and speaker diarization can improve the existing embedded systems. We study the performances of two new methods and discuss the benefits of DNN based approaches which improve performances by about 100%.
This work explores the relationship between the set of Wardrop equilibria~(WE) of a routing game, the total demand of that game, and the occurrence of Braess's paradox~(BP). The BP formalizes the counter-intuitive fact that for some networks, removing a path from the network decreases congestion at WE. For a single origin-destination routing games with affine cost functions, the first part of this work provides tools for analyzing the evolution of the WE as the demand varies. It characterizes the piece-wise affine nature of this dependence by showing that the set of directions in which the WE can vary in each piece is the solution of a variational inequality problem. In the process we establish various properties of changes in the set of used and minimal-cost paths as demand varies. As a consequence of these characterizations, we derive a procedure to obtain the WE for all demands above a certain threshold. The second part of the paper deals with detecting the presence of BP in a network. We supply a number of sufficient conditions that reveal the presence of BP and that are computationally tractable. We also discuss a different perspective on BP, where we establish that a path causing BP at a particular demand must be strictly beneficial to the network at a lower demand. Several examples throughout this work illustrate and elaborate our findings.
Quantum Generative Modelling (QGM) relies on preparing quantum states and generating samples from these states as hidden - or known - probability distributions. As distributions from some classes of quantum states (circuits) are inherently hard to sample classically, QGM represents an excellent testbed for quantum supremacy experiments. Furthermore, generative tasks are increasingly relevant for industrial machine learning applications, and thus QGM is a strong candidate for demonstrating a practical quantum advantage. However, this requires that quantum circuits are trained to represent industrially relevant distributions, and the corresponding training stage has an extensive training cost for current quantum hardware in practice. In this work, we propose protocols for classical training of QGMs based on circuits of the specific type that admit an efficient gradient computation, while remaining hard to sample. In particular, we consider Instantaneous Quantum Polynomial (IQP) circuits and their extensions. Showing their classical simulability in terms of the time complexity, sparsity and anti-concentration properties, we develop a classically tractable way of simulating their output probability distributions, allowing classical training to a target probability distribution. The corresponding quantum sampling from IQPs can be performed efficiently, unlike when using classical sampling. We numerically demonstrate the end-to-end training of IQP circuits using probability distributions for up to 30 qubits on a regular desktop computer. When applied to industrially relevant distributions this combination of classical training with quantum sampling represents an avenue for reaching advantage in the NISQ era.
Depression is a common mental disorder. Automatic depression detection tools using speech, enabled by machine learning, help early screening of depression. This paper addresses two limitations that may hinder the clinical implementations of such tools: noise resulting from segment-level labelling and a lack of model interpretability. We propose a bi-modal speech-level transformer to avoid segment-level labelling and introduce a hierarchical interpretation approach to provide both speech-level and sentence-level interpretations, based on gradient-weighted attention maps derived from all attention layers to track interactions between input features. We show that the proposed model outperforms a model that learns at a segment level ($p$=0.854, $r$=0.947, $F1$=0.897 compared to $p$=0.732, $r$=0.808, $F1$=0.768). For model interpretation, using one true positive sample, we show which sentences within a given speech are most relevant to depression detection; and which text tokens and Mel-spectrogram regions within these sentences are most relevant to depression detection. These interpretations allow clinicians to verify the validity of predictions made by depression detection tools, promoting their clinical implementations.
Data-driven constitutive modeling with neural networks has received increased interest in recent years due to its ability to easily incorporate physical and mechanistic constraints and to overcome the challenging and time-consuming task of formulating phenomenological constitutive laws that can accurately capture the observed material response. However, even though neural network-based constitutive laws have been shown to generalize proficiently, the generated representations are not easily interpretable due to their high number of trainable parameters. Sparse regression approaches exist that allow to obtaining interpretable expressions, but the user is tasked with creating a library of model forms which by construction limits their expressiveness to the functional forms provided in the libraries. In this work, we propose to train regularized physics-augmented neural network-based constitutive models utilizing a smoothed version of $L^{0}$-regularization. This aims to maintain the trustworthiness inherited by the physical constraints, but also enables interpretability which has not been possible thus far on any type of machine learning-based constitutive model where model forms were not assumed a-priory but were actually discovered. During the training process, the network simultaneously fits the training data and penalizes the number of active parameters, while also ensuring constitutive constraints such as thermodynamic consistency. We show that the method can reliably obtain interpretable and trustworthy constitutive models for compressible and incompressible hyperelasticity, yield functions, and hardening models for elastoplasticity, for synthetic and experimental data.
Many modern statistical applications involve a two-level sampling scheme that first samples subjects from a population and then samples observations on each subject. These schemes often are designed to learn both the population-level functional structures shared by the subjects and the functional characteristics specific to individual subjects. Common wisdom suggests that learning population-level structures benefits from sampling more subjects whereas learning subject-specific structures benefits from deeper sampling within each subject. Oftentimes these two objectives compete for limited sampling resources, which raises the question of how to optimally sample at the two levels. We quantify such sampling-depth trade-offs by establishing the $L_2$ minimax risk rates for learning the population-level and subject-specific structures under a hierarchical Gaussian process model framework where we consider a Bayesian and a frequentist perspective on the unknown population-level structure. These rates provide general lessons for designing two-level sampling schemes. Interestingly, subject-specific learning occasionally benefits more by sampling more subjects than by deeper within-subject sampling. We also construct estimators that adapt to unknown smoothness and achieve the corresponding minimax rates. We conduct two simulation experiments validating our theory and illustrating the sampling trade-off in practice, and apply these estimators to two real datasets.
The authors are concerned about the safety, health, and rights of the European citizens due to inadequate measures and procedures required by the current draft of the EU Artificial Intelligence (AI) Act for the conformity assessment of AI systems. We observe that not only the current draft of the EU AI Act, but also the accompanying standardization efforts in CEN/CENELEC, have resorted to the position that real functional guarantees of AI systems supposedly would be unrealistic and too complex anyways. Yet enacting a conformity assessment procedure that creates the false illusion of trust in insufficiently assessed AI systems is at best naive and at worst grossly negligent. The EU AI Act thus misses the point of ensuring quality by functional trustworthiness and correctly attributing responsibilities. The trustworthiness of an AI decision system lies first and foremost in the correct statistical testing on randomly selected samples and in the precision of the definition of the application domain, which enables drawing samples in the first place. We will subsequently call this testable quality functional trustworthiness. It includes a design, development, and deployment that enables correct statistical testing of all relevant functions. We are firmly convinced and advocate that a reliable assessment of the statistical functional properties of an AI system has to be the indispensable, mandatory nucleus of the conformity assessment. In this paper, we describe the three necessary elements to establish a reliable functional trustworthiness, i.e., (1) the definition of the technical distribution of the application, (2) the risk-based minimum performance requirements, and (3) the statistically valid testing based on independent random samples.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
Knowledge graphs (KGs) of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge graphs are typically incomplete, it is useful to perform knowledge graph completion or link prediction, i.e. predict whether a relationship not in the knowledge graph is likely to be true. This paper serves as a comprehensive survey of embedding models of entities and relationships for knowledge graph completion, summarizing up-to-date experimental results on standard benchmark datasets and pointing out potential future research directions.
Events are happening in real-world and real-time, which can be planned and organized occasions involving multiple people and objects. Social media platforms publish a lot of text messages containing public events with comprehensive topics. However, mining social events is challenging due to the heterogeneous event elements in texts and explicit and implicit social network structures. In this paper, we design an event meta-schema to characterize the semantic relatedness of social events and build an event-based heterogeneous information network (HIN) integrating information from external knowledge base, and propose a novel Pair-wise Popularity Graph Convolutional Network (PP-GCN) based fine-grained social event categorization model. We propose a Knowledgeable meta-paths Instances based social Event Similarity (KIES) between events and build a weighted adjacent matrix as input to the PP-GCN model. Comprehensive experiments on real data collections are conducted to compare various social event detection and clustering tasks. Experimental results demonstrate that our proposed framework outperforms other alternative social event categorization techniques.