Existing stochastic selection strategies for parent selection in generational GA help build genetic diversity and sustain exploration; however, it ignores the possibility of exploiting knowledge gained by the process to make informed decisions for parent selection, which can often lead to an inefficient search for large, challenging optimization problems. This work proposes a deterministic parent selection strategy for recombination in a generational GA setting called Upper Bound-based Parent Selection (UBS) to solve NP-hard combinatorial optimization problems. Specifically, as part of the UBS strategy, we formulate the parent selection problem using the MAB framework and a modified UCB1 algorithm to manage exploration and exploitation. Further, we provided a unique similarity-based approach for transferring knowledge of the search progress between generations to accelerate the search. To demonstrate the effectiveness of the proposed UBS strategy in comparison to traditional stochastic selection strategies, we conduct experimental studies on two NP-hard combinatorial optimization problems: team orienteering and quadratic assignment. Specifically, we first perform a characterization study to determine the potential of UBS and the best configuration for all the selection strategies involved. Next, we run experiments using these best configurations as part of the comparison study. The results from the characterization studies reveal that UBS, in most cases, favors larger variations among the population between generations. Next, the comparison studies reveal that UBS can effectively search for high-quality solutions faster than traditional stochastic selection strategies on challenging NP-hard combinatorial optimization problems under given experimental conditions.
Despite extensive pre-training in moral alignment to prevent generating harmful information, large language models (LLMs) remain vulnerable to jailbreak attacks. In this paper, we propose AutoDefense, a multi-agent defense framework that filters harmful responses from LLMs. With the response-filtering mechanism, our framework is robust against different jailbreak attack prompts, and can be used to defend different victim models. AutoDefense assigns different roles to LLM agents and employs them to complete the defense task collaboratively. The division in tasks enhances the overall instruction-following of LLMs and enables the integration of other defense components as tools. With AutoDefense, small open-source LMs can serve as agents and defend larger models against jailbreak attacks. Our experiments show that AutoDefense can effectively defense against different jailbreak attacks, while maintaining the performance at normal user request. For example, we reduce the attack success rate on GPT-3.5 from 55.74% to 7.95% using LLaMA-2-13b with a 3-agent system. Our code and data are publicly available at //github.com/XHMY/AutoDefense.
Predicting spatio-temporal traffic flow presents significant challenges due to complex interactions between spatial and temporal factors. Existing approaches often address these dimensions in isolation, neglecting their critical interdependencies. In this paper, we introduce the Spatio-Temporal Unitized Model (STUM), a unified framework designed to capture both spatial and temporal dependencies while addressing spatio-temporal heterogeneity through techniques such as distribution alignment and feature fusion. It also ensures both predictive accuracy and computational efficiency. Central to STUM is the Adaptive Spatio-temporal Unitized Cell (ASTUC), which utilizes low-rank matrices to seamlessly store, update, and interact with space, time, as well as their correlations. Our framework is also modular, allowing it to integrate with various spatio-temporal graph neural networks through components such as backbone models, feature extractors, residual fusion blocks, and predictive modules to collectively enhance forecasting outcomes. Experimental results across multiple real-world datasets demonstrate that STUM consistently improves prediction performance with minimal computational cost. These findings are further supported by hyperparameter optimization, pre-training analysis, and result visualization. We provide our source code for reproducibility at //anonymous.4open.science/r/STUM-E4F0.
Rate splitting multiple access (RSMA) is regarded as an essential and powerful physical-layer (PHY) paradigm for next generation communication systems. Under such a system, users employ successive interference cancellation (SIC), allowing them to decode a portion of the interference and treat the remainder as noise. However, a problem is that current RSMA systems rely on fixed-position antenna arrays, limiting their capacity to fully exploit spatial freedom. This constraint restricts beamforming gain, which substantially degrades RSMA performance. To address this problem, we propose an movable antenna (MA)-aided RSMA scheme that allows the antennas at the base station (BS) to adjust their positions dynamically. Our target is to maximize the system's sum rate of both common and private messages by jointly optimizing the MA positions, beamforming matrix, and common rate allocation. To tackle the formulated non-convex problem, we employ fractional programming (FP) and develop a two-stage, coarse-to-fine-grained search algorithm to obtain suboptimal solutions. Numerical results demonstrate that, with appropriate antenna adjustments, the MA-enabled system significantly enhances the overall performance and reliability of RSMA when employing the proposed algorithm compared to fixed-position antenna configurations.
Visual imitation learning methods demonstrate strong performance, yet they lack generalization when faced with visual input perturbations, including variations in lighting and textures, impeding their real-world application. We propose Stem-OB that utilizes pretrained image diffusion models to suppress low-level visual differences while maintaining high-level scene structures. This image inversion process is akin to transforming the observation into a shared representation, from which other observations stem, with extraneous details removed. Stem-OB contrasts with data-augmentation approaches as it is robust to various unspecified appearance changes without the need for additional training. Our method is a simple yet highly effective plug-and-play solution. Empirical results confirm the effectiveness of our approach in simulated tasks and show an exceptionally significant improvement in real-world applications, with an average increase of 22.2% in success rates compared to the best baseline. See //hukz18.github.io/Stem-Ob/ for more info.
Reinforcement learning from human feedback (RLHF) provides a paradigm for aligning large language models (LLMs) with human preferences. This involves the initial training of a reward model based on pairwise human feedback. The reward model is subsequently utilized in reinforcement learning to assess the scores of each generated sentence as a whole, further guiding the optimization of LLMs. However, current approaches have a significant shortcoming: \emph{They allocate a single, sparse, and delayed reward to an entire sequence of output}. This may overlook some significant individual contributions of each token towards the desired outcome. To overcome this limitation, our paper proposes a novel reward redistribution method called R3HF, which facilitates a more fine-grained, token-level reward allocation. Specifically, our method treats the reward prediction task of the reward model as a regression problem. As a result, the redistributed rewards are computed by evaluating the specific contribution of each token to the reward model's output. This detailed approach improves the model's understanding of language nuances, leading to more precise enhancements in its performance. Our method is crafted to integrate seamlessly with most current techniques while incurring minimal computational costs. Through comprehensive experiments across diverse datasets and tasks, we have verified the effectiveness and superiority of our approach.
The application of large language models to provide relevance assessments presents exciting opportunities to advance information retrieval, natural language processing, and beyond, but to date many unknowns remain. This paper reports on the results of a large-scale evaluation (the TREC 2024 RAG Track) where four different relevance assessment approaches were deployed in situ: the "standard" fully manual process that NIST has implemented for decades and three different alternatives that take advantage of LLMs to different extents using the open-source UMBRELA tool. This setup allows us to correlate system rankings induced by the different approaches to characterize tradeoffs between cost and quality. We find that in terms of nDCG@20, nDCG@100, and Recall@100, system rankings induced by automatically generated relevance assessments from UMBRELA correlate highly with those induced by fully manual assessments across a diverse set of 77 runs from 19 teams. Our results suggest that automatically generated UMBRELA judgments can replace fully manual judgments to accurately capture run-level effectiveness. Surprisingly, we find that LLM assistance does not appear to increase correlation with fully manual assessments, suggesting that costs associated with human-in-the-loop processes do not bring obvious tangible benefits. Overall, human assessors appear to be stricter than UMBRELA in applying relevance criteria. Our work validates the use of LLMs in academic TREC-style evaluations and provides the foundation for future studies.
Recently, there has been a significant upsurge of interest in leveraging large language models (LLMs) to assist scientific discovery. However, most LLMs only focus on general science, while they lack domain-specific knowledge, such as chemical molecules and amino acid sequences. To bridge these gaps, we introduce SciDFM, a mixture-of-experts LLM, which is trained from scratch and is able to conduct college-level scientific reasoning and understand molecules and amino acid sequences. We collect a large-scale training corpus containing numerous scientific papers and books from different disciplines as well as data from domain-specific databases. We further fine-tune the pre-trained model on lots of instruction data to improve performances on downstream benchmarks. From experiment results, we show that SciDFM achieves strong performance on general scientific benchmarks such as SciEval and SciQ, and it reaches a SOTA performance on domain-specific benchmarks among models of similar size. We further analyze the expert layers and show that the results of expert selection vary with data from different disciplines. To benefit the broader research community, we open-source SciDFM at //huggingface.co/OpenDFM/SciDFM-MoE-A5.6B-v1.0.
Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.