亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The main objective of the present paper is to construct a new class of space-time discretizations for the stochastic $p$-Stokes system and analyze its stability and convergence properties. We derive regularity results for the approximation that are similar to the natural regularity of solutions. One of the key arguments relies on discrete extrapolation that allows to relate lower moments of discrete maximal processes. We show that, if the generic spatial discretization is constraint conforming, then the velocity approximation satisfies a best-approximation property in the natural distance. Moreover, we present an example such that the resulting velocity approximation converges with rate $1/2$ in time and $1$ in space towards the (unknown) target velocity with respect to the natural distance.

相關內容

A general a posteriori error analysis applies to five lowest-order finite element methods for two fourth-order semi-linear problems with trilinear non-linearity and a general source. A quasi-optimal smoother extends the source term to the discrete trial space, and more importantly, modifies the trilinear term in the stream-function vorticity formulation of the incompressible 2D Navier-Stokes and the von K\'{a}rm\'{a}n equations. This enables the first efficient and reliable a posteriori error estimates for the 2D Navier-Stokes equations in the stream-function vorticity formulation for Morley, two discontinuous Galerkin, $C^0$ interior penalty, and WOPSIP discretizations with piecewise quadratic polynomials.

Group ring NTRU (GR-NTRU) provides a general structure to design different variants of NTRU-like schemes by employing different groups. Although, most of the schemes in literature are built over cyclic groups, nonabelian groups can also be used. Coppersmith and Shamir in 1997 have suggested that noncommutativity may result in better security against some lattice attacks for some groups. Lattice attacks on the public key of NTRU-like cryptosystems try to retrieve the private key by solving the shortest vector problem (SVP) or its approximation in a lattice of a certain dimension, assuming the knowledge of the public key only. This paper shows that dihedral groups do not guarantee better security against this class of attacks. We prove that retrieving the private key is possible by solving the SVP in two lattices with half the dimension of the original lattice generated for GR-NTRU based on dihedral groups. The possibility of such an attack was mentioned by Yasuda et al.(IACR/2015/1170). In contrast to their proposed approach, we explicitly provide the lattice reduction without any structure theorem from the representation theory for finite groups. Furthermore, we demonstrate the effectiveness of our technique with experimental results.

In this paper, we study the problem of maximizing $k$-submodular functions subject to a knapsack constraint. For monotone objective functions, we present a $\frac{1}{2}(1-e^{-2})\approx 0.432$ greedy approximation algorithm. For the non-monotone case, we are the first to consider the knapsack problem and provide a greedy-type combinatorial algorithm with approximation ratio $\frac{1}{3}(1-e^{-3})\approx 0.317$.

Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastly improved inversions for the important fluid-flow property, permeability, it also provides a natural platform for inverting multimodal data including well measurements and active-source time-lapse seismic data. By adding a learned constraint, we arrive at a computationally feasible inversion approach that remains accurate. This is accomplished by including a trained deep neural network, known as a normalizing flow, which forces the model iterates to remain in-distribution, thereby safeguarding the accuracy of trained Fourier neural operators that act as surrogates for the computationally expensive multiphase flow simulations involving partial differential equation solves. By means of carefully selected experiments, centered around the problem of geological carbon storage, we demonstrate the efficacy of the proposed constrained optimization method on two different data modalities, namely time-lapse well and time-lapse seismic data. While permeability inversions from both these two modalities have their pluses and minuses, their joint inversion benefits from either, yielding valuable superior permeability inversions and CO2 plume predictions near, and far away, from the monitoring wells.

This paper introduces novel bulk-surface splitting schemes of first and second order for the wave equation with kinetic and acoustic boundary conditions of semi-linear type. For kinetic boundary conditions, we propose a reinterpretation of the system equations as a coupled system. This means that the bulk and surface dynamics are modeled separately and connected through a coupling constraint. This allows the implementation of splitting schemes, which show first-order convergence in numerical experiments. On the other hand, acoustic boundary conditions naturally separate bulk and surface dynamics. Here, Lie and Strang splitting schemes reach first- and second-order convergence, respectively, as we reveal numerically.

Iterative refinement (IR) is a popular scheme for solving a linear system of equations based on gradually improving the accuracy of an initial approximation. Originally developed to improve upon the accuracy of Gaussian elimination, interest in IR has been revived because of its suitability for execution on fast low-precision hardware such as analog devices and graphics processing units. IR generally converges when the error associated with the solution method is small, but is known to diverge when this error is large. We propose and analyze a novel enhancement to the IR algorithm by adding a line search optimization step that guarantees the algorithm will not diverge. Numerical experiments verify our theoretical results and illustrate the effectiveness of our proposed scheme.

The sequential composition of propositional logic programs has been recently introduced. This paper studies the sequential {\em decomposition} of programs by studying Green's relations $\mathcal{L,R,J}$ -- well-known in semigroup theory -- between programs. In a broader sense, this paper is a further step towards an algebraic theory of logic programming.

We consider the problem of approximating the regression function from noisy vector-valued data by an online learning algorithm using an appropriate reproducing kernel Hilbert space (RKHS) as prior. In an online algorithm, i.i.d. samples become available one by one by a random process and are successively processed to build approximations to the regression function. We are interested in the asymptotic performance of such online approximation algorithms and show that the expected squared error in the RKHS norm can be bounded by $C^2 (m+1)^{-s/(2+s)}$, where $m$ is the current number of processed data, the parameter $0<s\leq 1$ expresses an additional smoothness assumption on the regression function and the constant $C$ depends on the variance of the input noise, the smoothness of the regression function and further parameters of the algorithm.

We study a finite volume scheme approximating a parabolic-elliptic Keller-Segel system with power law diffusion with exponent $\gamma \in [1,3]$ and periodic boundary conditions. We derive conditional a posteriori bounds for the error measured in the $L^\infty(0,T;H^1(\Omega))$ norm for the chemoattractant and by a quasi-norm-like quantity for the density. These results are based on stability estimates and suitable conforming reconstructions of the numerical solution. We perform numerical experiments showing that our error bounds are linear in mesh width and elucidating the behaviour of the error estimator under changes of $\gamma$.

This study presents a comparative analysis of three predictive models with an increasing degree of flexibility: hidden dynamic geostatistical models (HDGM), generalised additive mixed models (GAMM), and the random forest spatiotemporal kriging models (RFSTK). These models are evaluated for their effectiveness in predicting PM$_{2.5}$ concentrations in Lombardy (North Italy) from 2016 to 2020. Despite differing methodologies, all models demonstrate proficient capture of spatiotemporal patterns within air pollution data with similar out-of-sample performance. Furthermore, the study delves into station-specific analyses, revealing variable model performance contingent on localised conditions. Model interpretation, facilitated by parametric coefficient analysis and partial dependence plots, unveils consistent associations between predictor variables and PM$_{2.5}$ concentrations. Despite nuanced variations in modelling spatiotemporal correlations, all models effectively accounted for the underlying dependence. In summary, this study underscores the efficacy of conventional techniques in modelling correlated spatiotemporal data, concurrently highlighting the complementary potential of Machine Learning and classical statistical approaches.

北京阿比特科技有限公司