Federated Learning (FL) has emerged as a promising solution in Edge Computing (EC) environments to process the proliferation of data generated by edge devices. By collaboratively optimizing the global machine learning models on distributed edge devices, FL circumvents the need for transmitting raw data and enhances user privacy. Despite practical successes, FL still confronts significant challenges including constrained edge device resources, multiple tasks deployment, and data heterogeneity. However, existing studies focus on mitigating the FL training costs of each single task whereas neglecting the resource consumption across multiple tasks in heterogeneous FL scenarios. In this paper, we propose Heterogeneous Federated Learning with Local Parameter Sharing (FedLPS) to fill this gap. FedLPS leverages principles from transfer learning to facilitate the deployment of multiple tasks on a single device by dividing the local model into a shareable encoder and task-specific encoders. To further reduce resource consumption, a channel-wise model pruning algorithm that shrinks the footprint of local models while accounting for both data and system heterogeneity is employed in FedLPS. Additionally, a novel heterogeneous model aggregation algorithm is proposed to aggregate the heterogeneous predictors in FedLPS. We implemented the proposed FedLPS on a real FL platform and compared it with state-of-the-art (SOTA) FL frameworks. The experimental results on five popular datasets and two modern DNN models illustrate that the proposed FedLPS significantly outperforms the SOTA FL frameworks by up to 4.88% and reduces the computational resource consumption by 21.3%. Our code is available at://github.com/jyzgh/FedLPS.
Dynamic analyses are a standard approach to analyzing and testing concurrent programs. Such techniques observe program traces and analyze them to infer the presence or absence of bugs. At its core, each analysis maintains a partial order $P$ that represents order dependencies between events of the analyzed trace $\sigma$. Naturally, the scalability of the analysis largely depends on how efficiently it maintains $P$. The standard data structure for this task has thus far been vector clocks. These, however, are slow for analyses that follow a non-streaming style, costing $O(n)$ for inserting (and propagating) each new ordering in $P$, where $n$ is the size of $\sigma$, while they cannot handle the deletion of existing orderings. In this paper we develop collective sparse segment trees (CSSTs), a simple but elegant data structure for generically maintaining a partial order $P$. CSSTs thrive when the width $k$ of $P$ is much smaller than the size $n$ of its domain, allowing inserting, deleting, and querying for orderings in $P$ to run in $O(logn)$ time. For a concurrent trace, $k$ is bounded by the number of its threads, and is normally orders of magnitude smaller than its size $n$, making CSSTs fitting for this setting. Our experimental results confirm that CSSTs are the best data structure currently to handle a range of dynamic analyses from existing literature.
Combining CNNs or ViTs, with RNNs for spatiotemporal forecasting, has yielded unparalleled results in predicting temporal and spatial dynamics. However, modeling extensive global information remains a formidable challenge; CNNs are limited by their narrow receptive fields, and ViTs struggle with the intensive computational demands of their attention mechanisms. The emergence of recent Mamba-based architectures has been met with enthusiasm for their exceptional long-sequence modeling capabilities, surpassing established vision models in efficiency and accuracy, which motivates us to develop an innovative architecture tailored for spatiotemporal forecasting. In this paper, we propose the VMRNN cell, a new recurrent unit that integrates the strengths of Vision Mamba blocks with LSTM. We construct a network centered on VMRNN cells to tackle spatiotemporal prediction tasks effectively. Our extensive evaluations show that our proposed approach secures competitive results on a variety of tasks while maintaining a smaller model size. Our code is available at //github.com/yyyujintang/VMRNN-PyTorch.
Many AI platforms, including traffic monitoring systems, use Federated Learning (FL) for decentralized sensor data processing for learning-based applications while preserving privacy and ensuring secured information transfer. On the other hand, applying supervised learning to large data samples, like high-resolution images requires intensive human labor to label different parts of a data sample. Multiple Instance Learning (MIL) alleviates this challenge by operating over labels assigned to the 'bag' of instances. In this paper, we introduce Federated Multiple-Instance Learning (FedMIL). This framework applies federated learning to boost the training performance in video-based MIL tasks such as vehicle accident detection using distributed CCTV networks. However, data sources in decentralized settings are not typically Independently and Identically Distributed (IID), making client selection imperative to collectively represent the entire dataset with minimal clients. To address this challenge, we propose DPPQ, a framework based on the Determinantal Point Process (DPP) with a quality-based kernel to select clients with the most diverse datasets that achieve better performance compared to both random selection and current DPP-based client selection methods even with less data utilization in the majority of non-IID cases. This offers a significant advantage for deployment on edge devices with limited computational resources, providing a reliable solution for training AI models in massive smart sensor networks.
Multi-Agent Path Finding (MAPF) in crowded environments presents a challenging problem in motion planning, aiming to find collision-free paths for all agents in the system. MAPF finds a wide range of applications in various domains, including aerial swarms, autonomous warehouse robotics, and self-driving vehicles. Current approaches to MAPF generally fall into two main categories: centralized and decentralized planning. Centralized planning suffers from the curse of dimensionality when the number of agents or states increases and thus does not scale well in large and complex environments. On the other hand, decentralized planning enables agents to engage in real-time path planning within a partially observable environment, demonstrating implicit coordination. However, they suffer from slow convergence and performance degradation in dense environments. In this paper, we introduce CRAMP, a novel crowd-aware decentralized reinforcement learning approach to address this problem by enabling efficient local communication among agents via Graph Neural Networks (GNNs), facilitating situational awareness and decision-making capabilities in congested environments. We test CRAMP on simulated environments and demonstrate that our method outperforms the state-of-the-art decentralized methods for MAPF on various metrics. CRAMP improves the solution quality up to 59% measured in makespan and collision count, and up to 35% improvement in success rate in comparison to previous methods.
Large Language Models (LLMs) raise concerns about lowering the cost of generating texts that could be used for unethical or illegal purposes, especially on social media. This paper investigates the promise of such models to help enforce legal requirements related to the disclosure of sponsored content online. We investigate the use of LLMs for generating synthetic Instagram captions with two objectives: The first objective (fidelity) is to produce realistic synthetic datasets. For this, we implement content-level and network-level metrics to assess whether synthetic captions are realistic. The second objective (utility) is to create synthetic data that is useful for sponsored content detection. For this, we evaluate the effectiveness of the generated synthetic data for training classifiers to identify undisclosed advertisements on Instagram. Our investigations show that the objectives of fidelity and utility may conflict and that prompt engineering is a useful but insufficient strategy. Additionally, we find that while individual synthetic posts may appear realistic, collectively they lack diversity, topic connectivity, and realistic user interaction patterns.
Temporal Logic (TL) can be used to rigorously specify complex high-level specification for systems in many engineering applications. The translation between natural language (NL) and TL has been under-explored due to the lack of dataset and generalizable model across different application domains. In this paper, we propose an accurate and generalizable transformation framework of English instructions from NL to TL, exploring the use of Large Language Models (LLMs) at multiple stages. Our contributions are twofold. First, we develop a framework to create a dataset of NL-TL pairs combining LLMs and human annotation. We publish a dataset with 28K NL-TL pairs. Then, we finetune T5 models on the lifted versions (i.e., the specific Atomic Propositions (AP) are hidden) of the NL and TL. The enhanced generalizability originates from two aspects: 1) Usage of lifted NL-TL characterizes common logical structures, without constraints of specific domains. 2) Application of LLMs in dataset creation largely enhances corpus richness. We test the generalization of trained models on five varied domains. To achieve full NL-TL transformation, we either combine the lifted model with AP recognition task or do the further finetuning on each specific domain. During the further finetuning, our model achieves higher accuracy (>95%) using only <10% training data, compared with the baseline sequence to sequence (Seq2Seq) model.
Recently, Graph Transformers have emerged as a promising solution to alleviate the inherent limitations of Graph Neural Networks (GNNs) and enhance graph representation performance. Unfortunately, Graph Transformers are computationally expensive due to the quadratic complexity inherent in self-attention when applied over large-scale graphs, especially for node tasks. In contrast, spiking neural networks (SNNs), with event-driven and binary spikes properties, can perform energy-efficient computation. In this work, we propose a novel insight into integrating SNNs with Graph Transformers and design a Spiking Graph Attention (SGA) module. The matrix multiplication is replaced by sparse addition and mask operations. The linear complexity enables all-pair node interactions on large-scale graphs with limited GPU memory. To our knowledge, our work is the first attempt to introduce SNNs into Graph Transformers. Furthermore, we design SpikeGraphormer, a Dual-branch architecture, combining a sparse GNN branch with our SGA-driven Graph Transformer branch, which can simultaneously perform all-pair node interactions and capture local neighborhoods. SpikeGraphormer consistently outperforms existing state-of-the-art approaches across various datasets and makes substantial improvements in training time, inference time, and GPU memory cost (10 ~ 20x lower than vanilla self-attention). It also performs well in cross-domain applications (image and text classification). We release our code at //github.com/PHD-lanyu/SpikeGraphormer.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.