亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

One impressive emergent capability of large language models (LLMs) is generation of code, including Structured Query Language (SQL) for databases. For the task of converting natural language text to SQL queries, Text-to-SQL, adaptation of LLMs is of paramount importance, both in in-context learning and fine-tuning settings, depending on the amount of adaptation data used. In this paper, we propose an LLM-based Text-to-SQL model SQL-PaLM, leveraging on PaLM-2, that pushes the state-of-the-art in both settings. Few-shot SQL-PaLM is based on an execution-based self-consistency prompting approach designed for Text-to-SQL, and achieves 77.3% in test-suite accuracy on Spider, which to our best knowledge is the first to outperform previous state-of-the-art with fine-tuning by a significant margin, 4%. Furthermore, we demonstrate that the fine-tuned SQL-PALM outperforms it further by another 1%. Towards applying SQL-PaLM to real-world scenarios we further evaluate its robustness on other challenging variants of Spider and demonstrate the superior generalization capability of SQL-PaLM. In addition, via extensive case studies, we demonstrate the impressive intelligent capabilities and various success enablers of LLM-based Text-to-SQL.

相關內容

We investigate various prompting strategies for enhancing personalized recommendation performance with large language models (LLMs) through input augmentation. Our proposed approach, termed LLM-Rec, encompasses four distinct prompting strategies: (1) basic prompting, (2) recommendation-driven prompting, (3) engagement-guided prompting, and (4) recommendation-driven + engagement-guided prompting. Our empirical experiments show that incorporating the augmented input text generated by LLM leads to improved recommendation performance. Recommendation-driven and engagement-guided prompting strategies are found to elicit LLM's understanding of global and local item characteristics. This finding highlights the importance of leveraging diverse prompts and input augmentation techniques to enhance the recommendation capabilities with LLMs.

The high computational and memory requirements of generative large language models (LLMs) make it challenging to serve them quickly and cheaply. This paper introduces SpecInfer, an LLM serving system that accelerates generative LLM inference with speculative inference and token tree verification. A key insight behind Specinfer is to combine various collectively boost-tuned small language models to jointly predict the LLM's outputs; the predictions are organized as a token tree, whose nodes each represent a candidate token sequence. The correctness of all candidate token sequences represented by a token tree is verified against the LLM in parallel using a novel tree-based parallel decoding mechanism. SpecInfer uses an LLM as a token tree verifier instead of an incremental decoder, which significantly reduces the end-to-end latency and computational requirement for serving generative LLMs while provably preserving model quality. Our evaluation shows that SpecInfer outperforms existing LLM serving systems by 1.3-2.4x for distributed LLM inference and by 2.6-3.5x for offloading-based LLM inference, while preserving the same generative performance. SpecInfer is publicly available at //github.com/flexflow/FlexFlow/tree/inference.

We propose MemoChat, a pipeline for refining instructions that enables large language models (LLMs) to effectively employ self-composed memos for maintaining consistent long-range open-domain conversations. We demonstrate a long-range open-domain conversation through iterative "memorization-retrieval-response" cycles. This requires us to carefully design tailored tuning instructions for each distinct stage. The instructions are reconstructed from a collection of public datasets to teach the LLMs to memorize and retrieve past dialogues with structured memos, leading to enhanced consistency when participating in future conversations. We invite experts to manually annotate a test set designed to evaluate the consistency of long-range conversations questions. Experiments on three testing scenarios involving both open-source and API-accessible chatbots at scale verify the efficacy of MemoChat, which outperforms strong baselines.

Chinese Spelling Check (CSC) refers to the detection and correction of spelling errors in Chinese texts. In practical application scenarios, it is important to make CSC models have the ability to correct errors across different domains. In this paper, we propose a retrieval-augmented spelling check framework called RSpell, which searches corresponding domain terms and incorporates them into CSC models. Specifically, we employ pinyin fuzzy matching to search for terms, which are combined with the input and fed into the CSC model. Then, we introduce an adaptive process control mechanism to dynamically adjust the impact of external knowledge on the model. Additionally, we develop an iterative strategy for the RSpell framework to enhance reasoning capabilities. We conducted experiments on CSC datasets in three domains: law, medicine, and official document writing. The results demonstrate that RSpell achieves state-of-the-art performance in both zero-shot and fine-tuning scenarios, demonstrating the effectiveness of the retrieval-augmented CSC framework. Our code is available at //github.com/47777777/Rspell.

Controllable text generation is a challenging and meaningful field in natural language generation (NLG). Especially, poetry generation is a typical one with well-defined and strict conditions for text generation which is an ideal playground for the assessment of current methodologies. While prior works succeeded in controlling either semantic or metrical aspects of poetry generation, simultaneously addressing both remains a challenge. In this paper, we pioneer the use of the Diffusion model for generating sonnets and Chinese SongCi poetry to tackle such challenges. In terms of semantics, our PoetryDiffusion model, built upon the Diffusion model, generates entire sentences or poetry by comprehensively considering the entirety of sentence information. This approach enhances semantic expression, distinguishing it from autoregressive and large language models (LLMs). For metrical control, the separation feature of diffusion generation and its constraint control module enable us to flexibly incorporate a novel metrical controller to manipulate and evaluate metrics (format and rhythm). The denoising process in PoetryDiffusion allows for gradual enhancement of semantics and flexible integration of the metrical controller which can calculate and impose penalties on states that stray significantly from the target control distribution. Experimental results on two datasets demonstrate that our model outperforms existing models in automatic evaluation of semantic, metrical, and overall performance as well as human evaluation.

This paper is to introduce an asynchronous and local learning framework for neural networks, named Modular Learning Framework (MOLE). This framework modularizes neural networks by layers, defines the training objective via mutual information for each module, and sequentially trains each module by mutual information maximization. MOLE makes the training become local optimization with gradient-isolated across modules, and this scheme is more biologically plausible than BP. We run experiments on vector-, grid- and graph-type data. In particular, this framework is capable of solving both graph- and node-level tasks for graph-type data. Therefore, MOLE has been experimentally proven to be universally applicable to different types of data.

This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.

Large, pre-trained transformer-based language models such as BERT have drastically changed the Natural Language Processing (NLP) field. We present a survey of recent work that uses these large language models to solve NLP tasks via pre-training then fine-tuning, prompting, or text generation approaches. We also present approaches that use pre-trained language models to generate data for training augmentation or other purposes. We conclude with discussions on limitations and suggested directions for future research.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司