The report provides an intricate analysis of cyber security defined in contemporary operational digital environments. An extensive literature review is formed to determine how the construct is reviewed in modern scholarly contexts. The article seeks to offer a comprehensive definition of the term "cybersecurity" to accentuate its multidisciplinary perspectives. A meaningful concise, and inclusive dimension will be provided to assist in designing scholarly discourse on the subject. The report will offer a unified framework for examining activities that constitute the concept resulting in a new definition; "Cybersecurity is the collection and concerting of resources including personnel and infrastructure, structures, and processes to protect networks and cyber-enabled computer systems from events that compromise the integrity and interfere with property rights, resulting in some extent of the loss." The encapsulation of the interdisciplinary domains will be critical in improving understanding and response to emerging challenges in cyberspace.
The archaeological dating of bronze dings has played a critical role in the study of ancient Chinese history. Current archaeology depends on trained experts to carry out bronze dating, which is time-consuming and labor-intensive. For such dating, in this study, we propose a learning-based approach to integrate advanced deep learning techniques and archaeological knowledge. To achieve this, we first collect a large-scale image dataset of bronze dings, which contains richer attribute information than other existing fine-grained datasets. Second, we introduce a multihead classifier and a knowledge-guided relation graph to mine the relationship between attributes and the ding era. Third, we conduct comparison experiments with various existing methods, the results of which show that our dating method achieves a state-of-the-art performance. We hope that our data and applied networks will enrich fine-grained classification research relevant to other interdisciplinary areas of expertise. The dataset and source code used are included in our supplementary materials, and will be open after submission owing to the anonymity policy. Source codes and data are available at: //github.com/zhourixin/bronze-Ding.
Engineering long-running computing systems that achieve their goals under ever-changing conditions pose significant challenges. Self-adaptation has shown to be a viable approach to dealing with changing conditions. Yet, the capabilities of a self-adaptive system are constrained by its operational design domain (ODD), i.e., the conditions for which the system was built (requirements, constraints, and context). Changes, such as adding new goals or dealing with new contexts, require system evolution. While the system evolution process has been automated substantially, it remains human-driven. Given the growing complexity of computing systems, human-driven evolution will eventually become unmanageable. In this paper, we provide a definition for ODD and apply it to a self-adaptive system. Next, we explain why conditions not covered by the ODD require system evolution. Then, we outline a new approach for self-evolution that leverages the concept of ODD, enabling a system to evolve autonomously to deal with conditions not anticipated by its initial ODD. We conclude with open challenges to realise self-evolution.
Graph neural networks (GNNs) have been utilized to create multi-layer graph models for a number of cybersecurity applications from fraud detection to software vulnerability analysis. Unfortunately, like traditional neural networks, GNNs also suffer from a lack of transparency, that is, it is challenging to interpret the model predictions. Prior works focused on specific factor explanations for a GNN model. In this work, we have designed and implemented Illuminati, a comprehensive and accurate explanation framework for cybersecurity applications using GNN models. Given a graph and a pre-trained GNN model, Illuminati is able to identify the important nodes, edges, and attributes that are contributing to the prediction while requiring no prior knowledge of GNN models. We evaluate Illuminati in two cybersecurity applications, i.e., code vulnerability detection and smart contract vulnerability detection. The experiments show that Illuminati achieves more accurate explanation results than state-of-the-art methods, specifically, 87.6% of subgraphs identified by Illuminati are able to retain their original prediction, an improvement of 10.3% over others at 77.3%. Furthermore, the explanation of Illuminati can be easily understood by the domain experts, suggesting the significant usefulness for the development of cybersecurity applications.
The rise of cyber threats on critical infrastructure and its potential for devastating consequences, has significantly increased. The dependency of new power grid technology on information, data analytic and communication systems make the entire electricity network vulnerable to cyber threats. Power transformers play a critical role within the power grid and are now commonly enhanced through factory add-ons or intelligent monitoring systems added later to improve the condition monitoring of critical and long lead time assets such as transformers. However, the increased connectivity of those power transformers opens the door to more cyber attacks. Therefore, the need to detect and prevent cyber threats is becoming critical. The first step towards that would be a deeper understanding of the potential cyber-attacks landscape against power transformers. Much of the existing literature pays attention to smart equipment within electricity distribution networks, and most methods proposed are based on model-based detection algorithms. Moreover, only a few of these works address the security vulnerabilities of power elements, especially transformers within the transmission network. To the best of our knowledge, there is no study in the literature that systematically investigate the cybersecurity challenges against the newly emerged smart transformers. This paper addresses this shortcoming by exploring the vulnerabilities and the attack vectors of power transformers within electricity networks, the possible attack scenarios and the risks associated with these attacks.
Next-generation augmented reality (AR) promises a high degree of context-awareness - a detailed knowledge of the environmental, user, social and system conditions in which an AR experience takes place. This will facilitate both the closer integration of the real and virtual worlds, and the provision of context-specific content or adaptations. However, environmental awareness in particular is challenging to achieve using AR devices alone; not only are these mobile devices' view of an environment spatially and temporally limited, but the data obtained by onboard sensors is frequently inaccurate and incomplete. This, combined with the fact that many aspects of core AR functionality and user experiences are impacted by properties of the real environment, motivates the use of ambient IoT devices, wireless sensors and actuators placed in the surrounding environment, for the measurement and optimization of environment properties. In this book chapter we categorize and examine the wide variety of ways in which these IoT sensors and actuators can support or enhance AR experiences, including quantitative insights and proof-of-concept systems that will inform the development of future solutions. We outline the challenges and opportunities associated with several important research directions which must be addressed to realize the full potential of next-generation AR.
The memory hierarchy has a high impact on the performance and power consumption in the system. Moreover, current embedded systems, included in mobile devices, are specifically designed to run multimedia applications, which are memory intensive. This increases the pressure on the memory subsystem and affects the performance and energy consumption. In this regard, the thermal problems, performance degradation and high energy consumption, can cause irreversible damage to the devices. We address the optimization of the whole memory subsystem with three approaches integrated as a single methodology. Firstly, the thermal impact of register file is analyzed and optimized. Secondly, the cache memory is addressed by optimizing cache configuration according to running applications and improving both performance and power consumption. Finally, we simplify the design and evaluation process of general-purpose and customized dynamic memory manager, in the main memory. To this aim, we apply different evolutionary algorithms in combination with memory simulators and profiling tools. This way, we are able to evaluate the quality of each candidate solution and take advantage of the exploration of solutions given by the optimization algorithm.We also provide an experimental experience where our proposal is assessed using well-known benchmark applications.
By interacting, synchronizing, and cooperating with its physical counterpart in real time, digital twin is promised to promote an intelligent, predictive, and optimized modern city. Via interconnecting massive physical entities and their virtual twins with inter-twin and intra-twin communications, the Internet of digital twins (IoDT) enables free data exchange, dynamic mission cooperation, and efficient information aggregation for composite insights across vast physical/virtual entities. However, as IoDT incorporates various cutting-edge technologies to spawn the new ecology, severe known/unknown security flaws and privacy invasions of IoDT hinders its wide deployment. Besides, the intrinsic characteristics of IoDT such as \emph{decentralized structure}, \emph{information-centric routing} and \emph{semantic communications} entail critical challenges for security service provisioning in IoDT. To this end, this paper presents an in-depth review of the IoDT with respect to system architecture, enabling technologies, and security/privacy issues. Specifically, we first explore a novel distributed IoDT architecture with cyber-physical interactions and discuss its key characteristics and communication modes. Afterward, we investigate the taxonomy of security and privacy threats in IoDT, discuss the key research challenges, and review the state-of-the-art defense approaches. Finally, we point out the new trends and open research directions related to IoDT.
Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.
This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website //pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.