The need to Fourier transform data sets with irregular sampling is shared by various domains of science. This is the case for example in astronomy or sismology. Iterative methods have been developed that allow to reach approximate solutions. Here an exact solution to the problem for band-limited periodic signals is presented. The exact spectrum can be deduced from the spectrum of the non-equispaced data through the inversion of a Toeplitz matrix. The result applies to data of any dimension. This method also provides an excellent approximation for non-periodic band-limit signals. The method allows to reach very high dynamic ranges ($10^{13}$ with double-float precision) which depend on the regularity of the samples.
It is well known that Newton's method, especially when applied to large problems such as the discretization of nonlinear partial differential equations (PDEs), can have trouble converging if the initial guess is too far from the solution. This work focuses on accelerating this convergence, in the context of the discretization of nonlinear elliptic PDEs. We first provide a quick review of existing methods, and justify our choice of learning an initial guess with a Fourier neural operator (FNO). This choice was motivated by the mesh-independence of such operators, whose training and evaluation can be performed on grids with different resolutions. The FNO is trained using a loss minimization over generated data, loss functions based on the PDE discretization. Numerical results, in one and two dimensions, show that the proposed initial guess accelerates the convergence of Newton's method by a large margin compared to a naive initial guess, especially for highly nonlinear or anisotropic problems.
Traditional dataset retrieval systems index on metadata information rather than on the data values. Thus relying primarily on manual annotations and high-quality metadata, processes known to be labour-intensive and challenging to automate. We propose a method to support metadata enrichment with topic annotations of column headers using three Large Language Models (LLMs): ChatGPT-3.5, GoogleBard and GoogleGemini. We investigate the LLMs ability to classify column headers based on domain-specific topics from a controlled vocabulary. We evaluate our approach by assessing the internal consistency of the LLMs, the inter-machine alignment, and the human-machine agreement for the topic classification task. Additionally, we investigate the impact of contextual information (i.e. dataset description) on the classification outcomes. Our results suggest that ChatGPT and GoogleGemini outperform GoogleBard for internal consistency as well as LLM-human-alignment. Interestingly, we found that context had no impact on the LLMs performances. This work proposes a novel approach that leverages LLMs for text classification using a controlled topic vocabulary, which has the potential to facilitate automated metadata enrichment, thereby enhancing dataset retrieval and the Findability, Accessibility, Interoperability and Reusability (FAIR) of research data on the Web.
De-noising is a prominent step in the spectra post-processing procedure. Previous machine learning-based methods are fast but mostly based on supervised learning and require a training set that may be typically expensive in real experimental measurements. Unsupervised learning-based algorithms are slow and require many iterations to achieve convergence. Here, we bridge this gap by proposing a training-set-free two-stage deep learning method. We show that the fuzzy fixed input in previous methods can be improved by introducing an adaptive prior. Combined with more advanced optimization techniques, our approach can achieve five times acceleration compared to previous work. Theoretically, we study the landscape of a corresponding non-convex linear problem, and our results indicates that this problem has benign geometry for first-order algorithms to converge.
It is well known that the class of rotation invariant algorithms are suboptimal even for learning sparse linear problems when the number of examples is below the "dimension" of the problem. This class includes any gradient descent trained neural net with a fully-connected input layer (initialized with a rotationally symmetric distribution). The simplest sparse problem is learning a single feature out of $d$ features. In that case the classification error or regression loss grows with $1-k/n$ where $k$ is the number of examples seen. These lower bounds become vacuous when the number of examples $k$ reaches the dimension $d$. We show that when noise is added to this sparse linear problem, rotation invariant algorithms are still suboptimal after seeing $d$ or more examples. We prove this via a lower bound for the Bayes optimal algorithm on a rotationally symmetrized problem. We then prove much lower upper bounds on the same problem for simple non-rotation invariant algorithms. Finally we analyze the gradient flow trajectories of many standard optimization algorithms in some simple cases and show how they veer toward or away from the sparse targets. We believe that our trajectory categorization will be useful in designing algorithms that can exploit sparse targets and our method for proving lower bounds will be crucial for analyzing other families of algorithms that admit different classes of invariances.
An approach to optimal actuator design based on shape and topology optimisation techniques is presented. For linear diffusion equations, two scenarios are considered. For the first one, best actuators are determined depending on a given initial condition. In the second scenario, optimal actuators are determined based on all initial conditions not exceeding a chosen norm. Shape and topological sensitivities of these cost functionals are determined. A numerical algorithm for optimal actuator design based on the sensitivities and a level-set method is presented. Numerical results support the proposed methodology.
Iterated conditional expectation (ICE) g-computation is an estimation approach for addressing time-varying confounding for both longitudinal and time-to-event data. Unlike other g-computation implementations, ICE avoids the need to specify models for each time-varying covariate. For variance estimation, previous work has suggested the bootstrap. However, bootstrapping can be computationally intense and sensitive to the number of resamples used. Here, we present ICE g-computation as a set of stacked estimating equations. Therefore, the variance for the ICE g-computation estimator can be consistently estimated using the empirical sandwich variance estimator. Performance of the variance estimator was evaluated empirically with a simulation study. The proposed approach is also demonstrated with an illustrative example on the effect of cigarette smoking on the prevalence of hypertension. In the simulation study, the empirical sandwich variance estimator appropriately estimated the variance. When comparing runtimes between the sandwich variance estimator and the bootstrap for the applied example, the sandwich estimator was substantially faster, even when bootstraps were run in parallel. The empirical sandwich variance estimator is a viable option for variance estimation with ICE g-computation.
As data from monitored structures become increasingly available, the demand grows for it to be used efficiently to add value to structural operation and management. One way in which this can be achieved is to use structural response measurements to assess the usefulness of models employed to describe deterioration processes acting on a structure, as well the mechanical behavior of the latter. This is what this work aims to achieve by first, framing Structural Health Monitoring as a Bayesian model updating problem, in which the quantities of inferential interest characterize the deterioration process and/or structural state. Then, using the posterior estimates of these quantities, a decision-theoretic definition is proposed to assess the structural and/or deterioration models based on (a) their ability to explain the data and (b) their performance on downstream decision support-based tasks. The proposed framework is demonstrated on strain response data obtained from a test specimen which was subjected to three-point bending while simultaneously exposed to accelerated corrosion leading to thickness loss. Results indicate that the level of \textit{a priori} domain knowledge on the deterioration form is critical.
Machine learning is employed for solving physical systems governed by general nonlinear partial differential equations (PDEs). However, complex multi-physics systems such as acoustic-structure coupling are often described by a series of PDEs that incorporate variable physical quantities, which are referred to as parametric systems. There are lack of strategies for solving parametric systems governed by PDEs that involve explicit and implicit quantities. In this paper, a deep learning-based Multi Physics-Informed PointNet (MPIPN) is proposed for solving parametric acoustic-structure systems. First, the MPIPN induces an enhanced point-cloud architecture that encompasses explicit physical quantities and geometric features of computational domains. Then, the MPIPN extracts local and global features of the reconstructed point-cloud as parts of solving criteria of parametric systems, respectively. Besides, implicit physical quantities are embedded by encoding techniques as another part of solving criteria. Finally, all solving criteria that characterize parametric systems are amalgamated to form distinctive sequences as the input of the MPIPN, whose outputs are solutions of systems. The proposed framework is trained by adaptive physics-informed loss functions for corresponding computational domains. The framework is generalized to deal with new parametric conditions of systems. The effectiveness of the MPIPN is validated by applying it to solve steady parametric acoustic-structure coupling systems governed by the Helmholtz equations. An ablation experiment has been implemented to demonstrate the efficacy of physics-informed impact with a minority of supervised data. The proposed method yields reasonable precision across all computational domains under constant parametric conditions and changeable combinations of parametric conditions for acoustic-structure systems.
Activation Patching is a method of directly computing causal attributions of behavior to model components. However, applying it exhaustively requires a sweep with cost scaling linearly in the number of model components, which can be prohibitively expensive for SoTA Large Language Models (LLMs). We investigate Attribution Patching (AtP), a fast gradient-based approximation to Activation Patching and find two classes of failure modes of AtP which lead to significant false negatives. We propose a variant of AtP called AtP*, with two changes to address these failure modes while retaining scalability. We present the first systematic study of AtP and alternative methods for faster activation patching and show that AtP significantly outperforms all other investigated methods, with AtP* providing further significant improvement. Finally, we provide a method to bound the probability of remaining false negatives of AtP* estimates.
This study explores the sample complexity for two-layer neural networks to learn a generalized linear target function under Stochastic Gradient Descent (SGD), focusing on the challenging regime where many flat directions are present at initialization. It is well-established that in this scenario $n=O(d \log d)$ samples are typically needed. However, we provide precise results concerning the pre-factors in high-dimensional contexts and for varying widths. Notably, our findings suggest that overparameterization can only enhance convergence by a constant factor within this problem class. These insights are grounded in the reduction of SGD dynamics to a stochastic process in lower dimensions, where escaping mediocrity equates to calculating an exit time. Yet, we demonstrate that a deterministic approximation of this process adequately represents the escape time, implying that the role of stochasticity may be minimal in this scenario.