亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Constructions of distance-optimal codes and quasi-perfect codes are challenging problems and have attracted many attentions. In this paper, we give the following three results. 1) If $\lambda|q^{sm}-1$ and $\lambda <\sqrt{\frac{(q^s-1)}{2(q-1)^2(1+\epsilon)}}$, an infinite family of distance-optimal $q$-ary cyclic sum-rank codes with the block length $t=\frac{q^{sm}-1}{\lambda}$, the matrix size $s \times s$, the cardinality $q^{s^2t-s(2m+3)}$ and the minimum sum-rank distance four is constructed. 2) Block length $q^4-1$ and the matrix size $2 \times 2$ distance-optimal sum-rank codes with the minimum sum-rank distance four and the Singleton defect four are constructed. These sum-rank codes are close to the sphere packing bound , the Singleton-like bound and have much larger block length $q^4-1>>q-1$. 3) For given positive integers $m$ satisfying $2 \leq m$, an infinite family of quasi-perfect sum-rank codes with the matrix size $2 \times m$, and the minimum sum-rank distance three is also constructed. Quasi-perfect binary sum-rank codes with the minimum sum-rank distance four are also given. Almost MSRD $q$-ary codes with the block lengths up to $q^2$ are given. We show that more distance-optimal binary sum-rank codes can be obtained from the Plotkin sum.

相關內容

Speech recognition and translation systems perform poorly on noisy inputs, which are frequent in realistic environments. Augmenting these systems with visual signals has the potential to improve robustness to noise. However, audio-visual (AV) data is only available in limited amounts and for fewer languages than audio-only resources. To address this gap, we present XLAVS-R, a cross-lingual audio-visual speech representation model for noise-robust speech recognition and translation in over 100 languages. It is designed to maximize the benefits of limited multilingual AV pre-training data, by building on top of audio-only multilingual pre-training and simplifying existing pre-training schemes. Extensive evaluation on the MuAViC benchmark shows the strength of XLAVS-R on downstream audio-visual speech recognition and translation tasks, where it outperforms the previous state of the art by up to 18.5% WER and 4.7 BLEU given noisy AV inputs, and enables strong zero-shot audio-visual ability with audio-only fine-tuning.

Clustering speaker embeddings is crucial in speaker diarization but hasn't received as much focus as other components. Moreover, the robustness of speaker diarization across various datasets hasn't been explored when the development and evaluation data are from different domains. To bridge this gap, this study thoroughly examines spectral clustering for both same-domain and cross-domain speaker diarization. Our extensive experiments on two widely used corpora, AMI and DIHARD, reveal the performance trend of speaker diarization in the presence of domain mismatch. We observe that the performance difference between two different domain conditions can be attributed to the role of spectral clustering. In particular, keeping other modules unchanged, we show that differences in optimal tuning parameters as well as speaker count estimation originates due to the mismatch. This study opens several future directions for speaker diarization research.

Additive spatial statistical models with weakly stationary process assumptions have become standard in spatial statistics. However, one disadvantage of such models is the computation time, which rapidly increases with the number of data points. The goal of this article is to apply an existing subsampling strategy to standard spatial additive models and to derive the spatial statistical properties. We call this strategy the ''spatial data subset model'' (SDSM) approach, which can be applied to big datasets in a computationally feasible way. Our approach has the advantage that one does not require any additional restrictive model assumptions. That is, computational gains increase as model assumptions are removed when using our model framework. This provides one solution to the computational bottlenecks that occur when applying methods such as Kriging to ''big data''. We provide several properties of this new spatial data subset model approach in terms of moments, sill, nugget, and range under several sampling designs. An advantage of our approach is that it subsamples without throwing away data, and can be implemented using datasets of any size that can be stored. We present the results of the spatial data subset model approach on simulated datasets, and on a large dataset consists of 150,000 observations of daytime land surface temperatures measured by the MODIS instrument onboard the Terra satellite.

Manipulation of articulated and deformable objects can be difficult due to their compliant and under-actuated nature. Unexpected disturbances can cause the object to deviate from a predicted state, making it necessary to use Model-Predictive Control (MPC) methods to plan motion. However, these methods need a short planning horizon to be practical. Thus, MPC is ill-suited for long-horizon manipulation tasks due to local minima. In this paper, we present a diffusion-based method that guides an MPC method to accomplish long-horizon manipulation tasks by dynamically specifying sequences of subgoals for the MPC to follow. Our method, called Subgoal Diffuser, generates subgoals in a coarse-to-fine manner, producing sparse subgoals when the task is easily accomplished by MPC and more dense subgoals when the MPC method needs more guidance. The density of subgoals is determined dynamically based on a learned estimate of reachability, and subgoals are distributed to focus on challenging parts of the task. We evaluate our method on two robot manipulation tasks and find it improves the planning performance of an MPC method, and also outperforms prior diffusion-based methods.

The 6TiSCH protocol stack was proposed to ensure high-performance communications in the Industrial Internet of Things (IIoT). However, the lack of sufficient time slots for nodes outside the 6TiSCH's Destination Oriented Directed Acyclic Graph (DODAG) to transmit their Destination Advertisement Object (DAO) messages and cell reservation requests significantly hinders their integration into the DODAG. This oversight not only prolongs the device's join time but also increases energy consumption during the network formation phase. Moreover, challenges emerge due to the substantial number of control packets employed by both the 6TiSCH Scheduling Function (SF) and routing protocol (RPL), thus draining more energy resources, increasing medium contention, and decreasing spatial reuse. Furthermore, an SF that overlooks previously allocated slots when assigning new ones to the same node may increase jitter, and more complications ensue when it neglects the state of the TSCH queue, thus leading to packet dropping due to queue saturation. Additional complexity arises when the RPL disregards the new parent's schedule saturation during parent switching, which results in inefficient energy and time usage. To address these issues, we introduce in this paper novel mechanisms, strategically situated at the intersection of SF and RPL that are designed to balance the control packet distribution and adaptively manage parent switching. Our proposal, implemented within the 6TiSCH simulator, demonstrates significant improvements across vital performance metrics, such as node's joining time, jitter, latency, energy consumption, and amount of traffic, in comparison to the conventional 6TiSCH benchmark.

With fact-checking by professionals being difficult to scale on social media, algorithmic techniques have been considered. However, it is uncertain how the public may react to labels by automated fact-checkers. In this study, we investigate the use of automated warning labels derived from misinformation detection literature and investigate their effects on three forms of post engagement. Focusing on political posts, we also consider how partisanship affects engagement. In a two-phases within-subjects experiment with 200 participants, we found that the generic warnings suppressed intents to comment on and share posts, but not on the intent to like them. Furthermore, when different reasons for the labels were provided, their effects on post engagement were inconsistent, suggesting that the reasons could have undesirably motivated engagement instead. Partisanship effects were observed across the labels with higher engagement for politically congruent posts. We discuss the implications on the design and use of automated warning labels.

For minimization problems without 2nd derivative information, methods that estimate Hessian ma- trices can be very effective. However, conventional techniques generate dense matrices that are prohibitive for large problems. Limited-memory compact representations express the dense arrays in terms of a low rank representation and have become the state-of-the-art for software implementations on large deterministic problems. We develop new compact representations that are parameterized by a choice of vectors and that reduce to existing well known formulas for special choices. We demonstrate effectiveness of the compact representations for large eigenvalue computations, tensor factorizations and nonlinear regressions.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

北京阿比特科技有限公司