3D multi-person motion prediction is a challenging task that involves modeling individual behaviors and interactions between people. Despite the emergence of approaches for this task, comparing them is difficult due to the lack of standardized training settings and benchmark datasets. In this paper, we introduce the Multi-Person Interaction Motion (MI-Motion) Dataset, which includes skeleton sequences of multiple individuals collected by motion capture systems and refined and synthesized using a game engine. The dataset contains 167k frames of interacting people's skeleton poses and is categorized into 5 different activity scenes. To facilitate research in multi-person motion prediction, we also provide benchmarks to evaluate the performance of prediction methods in three settings: short-term, long-term, and ultra-long-term prediction. Additionally, we introduce a novel baseline approach that leverages graph and temporal convolutional networks, which has demonstrated competitive results in multi-person motion prediction. We believe that the proposed MI-Motion benchmark dataset and baseline will facilitate future research in this area, ultimately leading to better understanding and modeling of multi-person interactions.
The field of robotic Flexible Endoscopes (FEs) has progressed significantly, offering a promising solution to reduce patient discomfort. However, the limited autonomy of most robotic FEs results in non-intuitive and challenging manoeuvres, constraining their application in clinical settings. While previous studies have employed lumen tracking for autonomous navigation, they fail to adapt to the presence of obstructions and sharp turns when the endoscope faces the colon wall. In this work, we propose a Deep Reinforcement Learning (DRL)-based navigation strategy that eliminates the need for lumen tracking. However, the use of DRL methods poses safety risks as they do not account for potential hazards associated with the actions taken. To ensure safety, we exploit a Constrained Reinforcement Learning (CRL) method to restrict the policy in a predefined safety regime. Moreover, we present a model selection strategy that utilises Formal Verification (FV) to choose a policy that is entirely safe before deployment. We validate our approach in a virtual colonoscopy environment and report that out of the 300 trained policies, we could identify three policies that are entirely safe. Our work demonstrates that CRL, combined with model selection through FV, can improve the robustness and safety of robotic behaviour in surgical applications.
Winograd is generally utilized to optimize convolution performance and computational efficiency because of the reduced multiplication operations, but the reliability issues brought by winograd are usually overlooked. In this work, we observe the great potential of winograd convolution in improving neural network (NN) fault tolerance. Based on the observation, we evaluate winograd convolution fault tolerance comprehensively from different granularities ranging from models, layers, and operation types for the first time. Then, we explore the use of inherent fault tolerance of winograd convolution for cost-effective NN protection against soft errors. Specifically, we mainly investigate how winograd convolution can be effectively incorporated with classical fault-tolerant design approaches including triple modular redundancy (TMR), fault-aware retraining, and constrained activation functions. According to our experiments, winograd convolution can reduce the fault-tolerant design overhead by 55.77\% on average without any accuracy loss compared to standard convolution, and further reduce the computing overhead by 17.24\% when the inherent fault tolerance of winograd convolution is considered. When it is applied on fault-tolerant neural networks enhanced with fault-aware retraining and constrained activation functions, the resulting model accuracy generally shows significant improvement in presence of various faults.
Most existing forecasting systems are memory-based methods, which attempt to mimic human forecasting ability by employing various memory mechanisms and have progressed in temporal modeling for memory dependency. Nevertheless, an obvious weakness of this paradigm is that it can only model limited historical dependence and can not transcend the past. In this paper, we rethink the temporal dependence of event evolution and propose a novel memory-anticipation-based paradigm to model an entire temporal structure, including the past, present, and future. Based on this idea, we present Memory-and-Anticipation Transformer (MAT), a memory-anticipation-based approach, to address the online action detection and anticipation tasks. In addition, owing to the inherent superiority of MAT, it can process online action detection and anticipation tasks in a unified manner. The proposed MAT model is tested on four challenging benchmarks TVSeries, THUMOS'14, HDD, and EPIC-Kitchens-100, for online action detection and anticipation tasks, and it significantly outperforms all existing methods. Code is available at //github.com/Echo0125/Memory-and-Anticipation-Transformer.
In a traditional Gaussian graphical model, data homogeneity is routinely assumed with no extra variables affecting the conditional independence. In modern genomic datasets, there is an abundance of auxiliary information, which often gets under-utilized in determining the joint dependency structure. In this article, we consider a Bayesian approach to model undirected graphs underlying heterogeneous multivariate observations with additional assistance from covariates. Building on product partition models, we propose a novel covariate-dependent Gaussian graphical model that allows graphs to vary with covariates so that observations whose covariates are similar share a similar undirected graph. To efficiently embed Gaussian graphical models into our proposed framework, we explore both Gaussian likelihood and pseudo-likelihood functions. For Gaussian likelihood, a G-Wishart distribution is used as a natural conjugate prior, and for the pseudo-likelihood, a product of Gaussian-conditionals is used. Moreover, the proposed model has large prior support and is flexible to approximate any $\nu$-H\"{o}lder conditional variance-covariance matrices with $\nu\in(0,1]$. We further show that based on the theory of fractional likelihood, the rate of posterior contraction is minimax optimal assuming the true density to be a Gaussian mixture with a known number of components. The efficacy of the approach is demonstrated via simulation studies and an analysis of a protein network for a breast cancer dataset assisted by mRNA gene expression as covariates.
By incorporating additional contextual information, deep biasing methods have emerged as a promising solution for speech recognition of personalized words. However, for real-world voice assistants, always biasing on such personalized words with high prediction scores can significantly degrade the performance of recognizing common words. To address this issue, we propose an adaptive contextual biasing method based on Context-Aware Transformer Transducer (CATT) that utilizes the biased encoder and predictor embeddings to perform streaming prediction of contextual phrase occurrences. Such prediction is then used to dynamically switch the bias list on and off, enabling the model to adapt to both personalized and common scenarios. Experiments on Librispeech and internal voice assistant datasets show that our approach can achieve up to 6.7% and 20.7% relative reduction in WER and CER compared to the baseline respectively, mitigating up to 96.7% and 84.9% of the relative WER and CER increase for common cases. Furthermore, our approach has a minimal performance impact in personalized scenarios while maintaining a streaming inference pipeline with negligible RTF increase.
Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.
Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.