Poisson process models are defined in terms of their rates for outage and restore processes in power system resilience events. These outage and restore processes easily yield the performance curves that track the evolution of resilience events, and the area, nadir, and duration of the performance curves are standard resilience metrics. This letter analyzes typical resilience events by analyzing the area, nadir, and duration of mean performance curves. Explicit and intuitive formulas for these metrics are derived in terms of the Poisson process model parameters, and these parameters can be estimated from utility data. This clarifies the calculation of metrics of typical resilience events, and shows what they depend on. The metric formulas are derived with lognormal, exponential, or constant rates of restoration. The method is illustrated with a typical North American transmission event. Similarly nice formulas are obtained for the area metric for empirical power system data.
The vehicle routing problem with time windows (VRPTW) is a common optimization problem faced within the logistics industry. In this work, we explore the use of a previously-introduced qubit encoding scheme to reduce the number of binary variables, to evaluate the effectiveness of NISQ devices when applied to industry relevant optimization problems. We apply a quantum variational approach to a testbed of multiple VRPTW instances ranging from 11 to 3964 routes. These intances were formulated as quadratic unconstrained binary optimization (QUBO) problems based on realistic shipping scenarios. We compare our results with standard binary-to-qubit mappings after executing on simulators as well as various quantum hardware platforms, including IBMQ, AWS (Rigetti), and IonQ. These results are benchmarked against the classical solver, Gurobi. Our approach can find approximate solutions to the VRPTW comparable to those obtained from quantum algorithms using the full encoding, despite the reduction in qubits required. These results suggest that using the encoding scheme to fit larger problem sizes into fewer qubits is a promising step in using NISQ devices to find approximate solutions for industry-based optimization problems, although additional resources are still required to eke out the performance from larger problem sizes.
Ordinary differential equations (ODEs) are widely used to model complex dynamics that arises in biology, chemistry, engineering, finance, physics, etc. Calibration of a complicated ODE system using noisy data is generally very difficult. In this work, we propose a two-stage nonparametric approach to address this problem. We first extract the de-noised data and their higher order derivatives using boundary kernel method, and then feed them into a sparsely connected deep neural network with ReLU activation function. Our method is able to recover the ODE system without being subject to the curse of dimensionality and complicated ODE structure. When the ODE possesses a general modular structure, with each modular component involving only a few input variables, and the network architecture is properly chosen, our method is proven to be consistent. Theoretical properties are corroborated by an extensive simulation study that demonstrates the validity and effectiveness of the proposed method. Finally, we use our method to simultaneously characterize the growth rate of Covid-19 infection cases from 50 states of the USA.
Recent advancements in evaluating matrix-exponential functions have opened the doors to the practical use of exponential time-integration methods in numerical weather prediction (NWP). The success of exponential methods in shallow water simulations has led to the question of whether they can be beneficial in a 3D atmospheric model. In this paper, we take the first step forward by evaluating the behavior of exponential time-integration methods in the Navy's compressible deep-atmosphere nonhydrostatic global model (NEPTUNE-Navy Environmental Prediction sysTem Utilizing a Nonhydrostatic Engine). Simulations are conducted on a set of idealized test cases designed to assess key features of a nonhydrostatic model and demonstrate that exponential integrators capture the desired large and small-scale traits, yielding results comparable to those found in the literature. We propose a new upper boundary absorbing layer independent of reference state and shown to be effective in both idealized and real-data simulations. A real-data forecast using an exponential method with full physics is presented, providing a positive outlook for using exponential integrators for NWP.
The proliferation of data generation has spurred advancements in functional data analysis. With the ability to analyze multiple variables simultaneously, the demand for working with multivariate functional data has increased. This study proposes a novel formulation of the epigraph and hypograph indexes, as well as their generalized expressions, specifically tailored for the multivariate functional context. These definitions take into account the interrelations between components. Furthermore, the proposed indexes are employed to cluster multivariate functional data. In the clustering process, the indexes are applied to both the data and their first and second derivatives. This generates a reduced-dimension dataset from the original multivariate functional data, enabling the application of well-established multivariate clustering techniques that have been extensively studied in the literature. This methodology has been tested through simulated and real datasets, performing comparative analyses against state-of-the-art to assess its performance.
Anomalous diffusion in the presence or absence of an external force field is often modelled in terms of the fractional evolution equations, which can involve the hyper-singular source term. For this case, conventional time stepping methods may exhibit a severe order reduction. Although a second-order numerical algorithm is provided for the subdiffusion model with a simple hyper-singular source term $t^{\mu}$, $-2<\mu<-1$ in [arXiv:2207.08447], the convergence analysis remain to be proved. To fill in these gaps, we present a simple and robust smoothing method for the hyper-singular source term, where the Hadamard finite-part integral is introduced. This method is based on the smoothing/ID$m$-BDF$k$ method proposed by the authors [Shi and Chen, SIAM J. Numer. Anal., to appear] for subdiffusion equation with a weakly singular source term. We prove that the $k$th-order convergence rate can be restored for the diffusion-wave case $\gamma \in (1,2)$ and sketch the proof for the subdiffusion case $\gamma \in (0,1)$, even if the source term is hyper-singular and the initial data is not compatible. Numerical experiments are provided to confirm the theoretical results.
The possibility of dynamically modifying the computational load of neural models at inference time is crucial for on-device processing, where computational power is limited and time-varying. Established approaches for neural model compression exist, but they provide architecturally static models. In this paper, we investigate the use of early-exit architectures, that rely on intermediate exit branches, applied to large-vocabulary speech recognition. This allows for the development of dynamic models that adjust their computational cost to the available resources and recognition performance. Unlike previous works, besides using pre-trained backbones we also train the model from scratch with an early-exit architecture. Experiments on public datasets show that early-exit architectures from scratch not only preserve performance levels when using fewer encoder layers, but also improve task accuracy as compared to using single-exit models or using pre-trained models. Additionally, we investigate an exit selection strategy based on posterior probabilities as an alternative to frame-based entropy.
The behavior of quark matter with both external electric field and chiral chemical potential is theoretically and experimentally interesting to consider. In this paper, the case of simultaneous presence of imaginary electric field and chiral chemical potential is investigated using the lattice QCD approach with $N_f=1+1$ dynamical staggered fermions. We find that overall both the imaginary electric field and the chiral chemical potential can exacerbate chiral symmetry breaking, which is consistent with theoretical predictions. However we also find a non-monotonic behavior of chiral condensation at specific electric field strengths and chiral chemical potentials. In addition to this, we find that the behavior of Polyakov loop in the complex plane is not significantly affected by chiral chemical potential in the region of the parameters consider in this paper.
Atmospheric systems incorporating thermal dynamics must be stable with respect to both energy and entropy. While energy conservation can be enforced via the preservation of the skew-symmetric structure of the Hamiltonian form of the equations of motion, entropy conservation is typically derived as an additional invariant of the Hamiltonian system, and satisfied via the exact preservation of the chain rule. This is particularly challenging since the function spaces used to represent the thermodynamic variables in compatible finite element discretisations are typically discontinuous at element boundaries. In the present work we negate this problem by constructing our equations of motion via weighted averages of skew-symmetric formulations using both flux form and material form advection of thermodynamic variables, which allow for the necessary cancellations required to conserve entropy without the chain rule. We show that such formulations allow for stable simulations of both the thermal shallow water and 3D compressible Euler equations on the sphere using mixed compatible finite elements without entropy damping.
This paper addresses the problem of end-effector formation control for a mixed group of two-link manipulators moving in a horizontal plane that comprises of fully-actuated manipulators and underactuated manipulators with only the second joint being actuated (referred to as the passive-active (PA) manipulators). The problem is solved by extending the distributed end-effector formation controller for the fully-actuated manipulator to the PA manipulator moving in a horizontal plane by using its integrability. This paper presents stability analysis of the closed-loop systems under a given necessary condition, and we prove that the manipulators' end-effector converge to the desired formation shape. The proposed method is validated by simulations.
When modelling discontinuities (interfaces) using the finite element method, the standard approach is to use a conforming finite-element mesh in which the mesh matches the interfaces. However, this approach can prove cumbersome if the geometry is complex, in particular in 3D. In this work, we develop an efficient technique for a non-conforming finite-element treatment of weak discontinuities by using laminated microstructures. The approach is inspired by the so-called composite voxel technique that has been developed for FFT-based spectral solvers in computational homogenization. The idea behind the method is rather simple. Each finite element that is cut by an interface is treated as a simple laminate with the volume fraction of the phases and the lamination orientation determined in terms of the actual geometrical arrangement of the interface within the element. The approach is illustrated by several computational examples relevant to the micromechanics of heterogeneous materials. Elastic and elastic-plastic materials at small and finite strain are considered in the examples. The performance of the proposed method is compared to two alternative, simple methods showing that the new approach is in most cases superior to them while maintaining the simplicity.