The behavior of quark matter with both external electric field and chiral chemical potential is theoretically and experimentally interesting to consider. In this paper, the case of simultaneous presence of imaginary electric field and chiral chemical potential is investigated using the lattice QCD approach with $N_f=1+1$ dynamical staggered fermions. We find that overall both the imaginary electric field and the chiral chemical potential can exacerbate chiral symmetry breaking, which is consistent with theoretical predictions. However we also find a non-monotonic behavior of chiral condensation at specific electric field strengths and chiral chemical potentials. In addition to this, we find that the behavior of Polyakov loop in the complex plane is not significantly affected by chiral chemical potential in the region of the parameters consider in this paper.
We propose a new method for the construction of layer-adapted meshes for singularly perturbed differential equations (SPDEs), based on mesh partial differential equations (MPDEs) that incorporate \emph{a posteriori} solution information. There are numerous studies on the development of parameter robust numerical methods for SPDEs that depend on the layer-adapted mesh of Bakhvalov. In~\citep{HiMa2021}, a novel MPDE-based approach for constructing a generalisation of these meshes was proposed. Like with most layer-adapted mesh methods, the algorithms in that article depended on detailed derivations of \emph{a priori} bounds on the SPDE's solution and its derivatives. In this work we extend that approach so that it instead uses \emph{a posteriori} computed estimates of the solution. We present detailed algorithms for the efficient implementation of the method, and numerical results for the robust solution of two-parameter reaction-convection-diffusion problems, in one and two dimensions. We also provide full FEniCS code for a one-dimensional example.
In this work, a new class of vector-valued phase field models is presented, where the values of the phase parameters are constrained by a convex set. The generated phase fields feature the partition of the domain into patches of distinct phases, separated by thin interfaces. The configuration and dynamics of the phases are directly dependent on the geometry and topology of the convex constraint set, which makes it possible to engineer models of this type that exhibit desired interactions and patterns. An efficient proximal gradient solver is introduced to study numerically their L2-gradient flow, i.e.~the associated Allen-Cahn-type equation. Applying the solver together with various choices for the convex constraint set, yields numerical results that feature a number of patterns observed in nature and engineering, such as multiphase grains in metal alloys, traveling waves in reaction-diffusion systems, and vortices in magnetic materials.
We propose a method to modify a polygonal mesh in order to fit the zero-isoline of a level set function by extending a standard body-fitted strategy to a tessellation with arbitrarily-shaped elements. The novel level set-fitted approach, in combination with a Discontinuous Galerkin finite element approximation, provides an ideal setting to model physical problems characterized by embedded or evolving complex geometries, since it allows skipping any mesh post-processing in terms of grid quality. The proposed methodology is firstly assessed on the linear elasticity equation, by verifying the approximation capability of the level set-fitted approach when dealing with configurations with heterogeneous material properties. Successively, we combine the level set-fitted methodology with a minimum compliance topology optimization technique, in order to deliver optimized layouts exhibiting crisp boundaries and reliable mechanical performances. An extensive numerical test campaign confirms the effectiveness of the proposed method.
A Petrov-Galerkin finite element method is constructed for a singularly perturbed elliptic problem in two space dimensions. The solution contains a regular boundary layer and two characteristic boundary layers. Exponential splines are used as test functions in one coordinate direction and are combined with bilinear trial functions defined on a Shishkin mesh. The resulting numerical method is shown to be a stable parameter-uniform numerical method that achieves a higher order of convergence compared to upwinding on the same mesh.
We investigate long-term cognitive effects of a hypothetical intervention, where systolic blood pressure (sBP) is monitored at more optimal levels, in a large representative sample. A limitation with previous research on the potential risk reduction of such interventions is that they do not properly account for the reduction of mortality rates. Hence, one can only speculate whether the effect is a result from changes in cognition or changes in mortality. As such, we extend previous research by providing both an etiological and a prognostic effect estimate. To do this we also propose a Bayesian semi-parametric estimation approach for an incremental intervention, using the extended G-formula. We also introduce a novel sparsity-inducing Dirichlet hyperprior for longitudinal data, demonstrate the usefulness of our approach in simulations, and compare the performance relative to other Bayesian decision tree ensemble approaches. The results revealed a weak (non-significant) prognostic effect and a significant etiological effect in later-life, but not in mid-life. These findings provide important information about long-term sBP control in cognitive aging, indicating that sBP interventions may have an effect on memory later in life at the individual level, although only small effects would be seen at the population level due to altered mortality rates.
The reverse engineering of a complex mixture, regardless of its nature, has become significant today. Being able to quickly assess the potential toxicity of new commercial products in relation to the environment presents a genuine analytical challenge. The development of digital tools (databases, chemometrics, machine learning, etc.) and analytical techniques (Raman spectroscopy, NIR spectroscopy, mass spectrometry, etc.) will allow for the identification of potential toxic molecules. In this article, we use the example of detergent products, whose composition can prove dangerous to humans or the environment, necessitating precise identification and quantification for quality control and regulation purposes. The combination of various digital tools (spectral database, mixture database, experimental design, Chemometrics / Machine Learning algorithm{\ldots}) together with different sample preparation methods (raw sample, or several concentrated / diluted samples) Raman spectroscopy, has enabled the identification of the mixture's constituents and an estimation of its composition. Implementing such strategies across different analytical tools can result in time savings for pollutant identification and contamination assessment in various matrices. This strategy is also applicable in the industrial sector for product or raw material control, as well as for quality control purposes.
Finding functions, particularly permutations, with good differential properties has received a lot of attention due to their possible applications. For instance, in combinatorial design theory, a correspondence of perfect $c$-nonlinear functions and difference sets in some quasigroups was recently shown [1]. Additionally, in a recent manuscript by Pal and Stanica [20], a very interesting connection between the $c$-differential uniformity and boomerang uniformity when $c=-1$ was pointed out, showing that that they are the same for an odd APN permutations. This makes the construction of functions with low $c$-differential uniformity an intriguing problem. We investigate the $c$-differential uniformity of some classes of permutation polynomials. As a result, we add four more classes of permutation polynomials to the family of functions that only contains a few (non-trivial) perfect $c$-nonlinear functions over finite fields of even characteristic. Moreover, we include a class of permutation polynomials with low $c$-differential uniformity over the field of characteristic~$3$. As a byproduct, our proofs shows the permutation property of these classes. To solve the involved equations over finite fields, we use various techniques, in particular, we find explicitly many Walsh transform coefficients and Weil sums that may be of an independent interest.
In the emerging field of mechanical metamaterials, using periodic lattice structures as a primary ingredient is relatively frequent. However, the choice of aperiodic lattices in these structures presents unique advantages regarding failure, e.g., buckling or fracture, because avoiding repeated patterns prevents global failures, with local failures occurring in turn that can beneficially delay structural collapse. Therefore, it is expedient to develop models for computing efficiently the effective mechanical properties in lattices from different general features while addressing the challenge of presenting topologies (or graphs) of different sizes. In this paper, we develop a deep learning model to predict energetically-equivalent mechanical properties of linear elastic lattices effectively. Considering the lattice as a graph and defining material and geometrical features on such, we show that Graph Neural Networks provide more accurate predictions than a dense, fully connected strategy, thanks to the geometrically induced bias through graph representation, closer to the underlying equilibrium laws from mechanics solved in the direct problem. Leveraging the efficient forward-evaluation of a vast number of lattices using this surrogate enables the inverse problem, i.e., to obtain a structure having prescribed specific behavior, which is ultimately suitable for multiscale structural optimization problems.
A convincing feature of least-squares finite element methods is the built-in a posteriori error estimator for any conforming discretization. In order to generalize this property to discontinuous finite element ansatz functions, this paper introduces a least-squares principle on piecewise Sobolev functions for the solution of the Poisson model problem in 2D with mixed boundary conditions. It allows for fairly general discretizations including standard piecewise polynomial ansatz spaces on triangular and polygonal meshes. The presented scheme enforces the interelement continuity of the piecewise polynomials by additional least-squares residuals. A side condition on the normal jumps of the flux variable requires a vanishing integral mean and enables a natural weighting of the jump in the least-squares functional in terms of the mesh size. This avoids over-penalization with additional regularity assumptions on the exact solution as usually present in the literature on discontinuous LSFEM. The proof of the built-in a posteriori error estimation for the over-penalized scheme is presented as well. All results in this paper are robust with respect to the size of the domain guaranteed by a suitable weighting of the residuals in the least-squares functional. Numerical experiments exhibit optimal convergence rates of the adaptive mesh-refining algorithm for various polynomial degrees.
The scaled boundary finite element method (SBFEM) has recently been employed as an efficient means to model three-dimensional structures, in particular when the geometry is provided as a voxel-based image. To this end, an octree decomposition of the computational domain is deployed and each cubic cell is treated as an SBFEM subdomain. The surfaces of each subdomain are discretized in the finite element sense. We improve on this idea by combining the semi-analytical concept of the SBFEM with certain transition elements on the subdomains' surfaces. Thus, we avoid the triangulation of surfaces employed in previous works and consequently reduce the number of surface elements and degrees of freedom. In addition, these discretizations allow coupling elements of arbitrary order such that local p-refinement can be achieved straightforwardly.