In Reinforcement Learning, agents learn policies by exploring and interacting with the environment. Due to the curse of dimensionality, learning policies that map high-dimensional sensory input to motor output is particularly challenging. During training, state of the art methods (SAC, PPO, etc.) explore the environment by perturbing the actuation with independent Gaussian noise. While this unstructured exploration has proven successful in numerous tasks, it can be suboptimal for overactuated systems. When multiple actuators, such as motors or muscles, drive behavior, uncorrelated perturbations risk diminishing each other's effect, or modifying the behavior in a task-irrelevant way. While solutions to introduce time correlation across action perturbations exist, introducing correlation across actuators has been largely ignored. Here, we propose LATent TIme-Correlated Exploration (Lattice), a method to inject temporally-correlated noise into the latent state of the policy network, which can be seamlessly integrated with on- and off-policy algorithms. We demonstrate that the noisy actions generated by perturbing the network's activations can be modeled as a multivariate Gaussian distribution with a full covariance matrix. In the PyBullet locomotion tasks, Lattice-SAC achieves state of the art results, and reaches 18% higher reward than unstructured exploration in the Humanoid environment. In the musculoskeletal control environments of MyoSuite, Lattice-PPO achieves higher reward in most reaching and object manipulation tasks, while also finding more energy-efficient policies with reductions of 20-60%. Overall, we demonstrate the effectiveness of structured action noise in time and actuator space for complex motor control tasks. The code is available at: //github.com/amathislab/lattice.
We consider the problem of efficient inference of the Average Treatment Effect in a sequential experiment where the policy governing the assignment of subjects to treatment or control can change over time. We first provide a central limit theorem for the Adaptive Augmented Inverse-Probability Weighted estimator, which is semiparametric efficient, under weaker assumptions than those previously made in the literature. This central limit theorem enables efficient inference at fixed sample sizes. We then consider a sequential inference setting, deriving both asymptotic and nonasymptotic confidence sequences that are considerably tighter than previous methods. These anytime-valid methods enable inference under data-dependent stopping times (sample sizes). Additionally, we use propensity score truncation techniques from the recent off-policy estimation literature to reduce the finite sample variance of our estimator without affecting the asymptotic variance. Empirical results demonstrate that our methods yield narrower confidence sequences than those previously developed in the literature while maintaining time-uniform error control.
Inversion methods, such as Textual Inversion, generate personalized images by incorporating concepts of interest provided by user images. However, existing methods often suffer from overfitting issues, where the dominant presence of inverted concepts leads to the absence of other desired concepts. It stems from the fact that during inversion, the irrelevant semantics in the user images are also encoded, forcing the inverted concepts to occupy locations far from the core distribution in the embedding space. To address this issue, we propose a method that guides the inversion process towards the core distribution for compositional embeddings. Additionally, we introduce a spatial regularization approach to balance the attention on the concepts being composed. Our method is designed as a post-training approach and can be seamlessly integrated with other inversion methods. Experimental results demonstrate the effectiveness of our proposed approach in mitigating the overfitting problem and generating more diverse and balanced compositions of concepts in the synthesized images. The source code is available at //github.com/zhangxulu1996/Compositional-Inversion.
Reinforcement Learning (RL) systems can be complex and non-interpretable, making it challenging for non-AI experts to understand or intervene in their decisions. This is due in part to the sequential nature of RL in which actions are chosen because of future rewards. However, RL agents discard the qualitative features of their training, making it difficult to recover user-understandable information for "why" an action is chosen. We propose a technique, Experiential Explanations, to generate counterfactual explanations by training influence predictors along with the RL policy. Influence predictors are models that learn how sources of reward affect the agent in different states, thus restoring information about how the policy reflects the environment. A human evaluation study revealed that participants presented with experiential explanations were better able to correctly guess what an agent would do than those presented with other standard types of explanation. Participants also found that experiential explanations are more understandable, satisfying, complete, useful, and accurate. The qualitative analysis provides insights into the factors of experiential explanations that are most useful.
The protection of sensitive data becomes more vital, as data increases in value and potency. Furthermore, the pressure increases from regulators and society on model developers to make their Artificial Intelligence (AI) models non-discriminatory. To boot, there is a need for interpretable, transparent AI models for high-stakes tasks. In general, measuring the fairness of any AI model requires the sensitive attributes of the individuals in the dataset, thus raising privacy concerns. In this work, the trade-offs between fairness, privacy and interpretability are further explored. We specifically examine the Statistical Parity (SP) of Decision Trees (DTs) with Differential Privacy (DP), that are each popular methods in their respective subfield. We propose a novel method, dubbed Privacy-Aware Fairness Estimation of Rules (PAFER), that can estimate SP in a DP-aware manner for DTs. DP, making use of a third-party legal entity that securely holds this sensitive data, guarantees privacy by adding noise to the sensitive data. We experimentally compare several DP mechanisms. We show that using the Laplacian mechanism, the method is able to estimate SP with low error while guaranteeing the privacy of the individuals in the dataset with high certainty. We further show experimentally and theoretically that the method performs better for DTs that humans generally find easier to interpret.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.
Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.
Correlation acts as a critical role in the tracking field, especially in recent popular Siamese-based trackers. The correlation operation is a simple fusion manner to consider the similarity between the template and the search region. However, the correlation operation itself is a local linear matching process, leading to lose semantic information and fall into local optimum easily, which may be the bottleneck of designing high-accuracy tracking algorithms. Is there any better feature fusion method than correlation? To address this issue, inspired by Transformer, this work presents a novel attention-based feature fusion network, which effectively combines the template and search region features solely using attention. Specifically, the proposed method includes an ego-context augment module based on self-attention and a cross-feature augment module based on cross-attention. Finally, we present a Transformer tracking (named TransT) method based on the Siamese-like feature extraction backbone, the designed attention-based fusion mechanism, and the classification and regression head. Experiments show that our TransT achieves very promising results on six challenging datasets, especially on large-scale LaSOT, TrackingNet, and GOT-10k benchmarks. Our tracker runs at approximatively 50 fps on GPU. Code and models are available at //github.com/chenxin-dlut/TransT.
Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.
We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.