This paper studies decentralized federated learning algorithms in wireless IoT networks. The traditional parameter server architecture for federated learning faces some problems such as low fault tolerance, large communication overhead and inaccessibility of private data. To solve these problems, we propose a Decentralized-Wireless-Federated-Learning algorithm called DWFL. The algorithm works in a system where the workers are organized in a peer-to-peer and server-less manner, and the workers exchange their privacy preserving data with the anolog transmission scheme over wireless channels in parallel. With rigorous analysis, we show that DWFL satisfies $(\epsilon,\delta)$-differential privacy and the privacy budget per worker scale as $\mathcal{O}(\frac{1}{\sqrt{N}})$, in contrast with the constant budget in the orthogonal transmission approach. Furthermore, DWFL converges at the same rate of $\sqrt{\frac{1}{TN}}$ as the best known centralized algorithm with a central parameter server. Extensive experiments demonstrate that our algorithm DWFL also performs well in real settings.
Distributed learning has become an integral tool for scaling up machine learning and addressing the growing need for data privacy. Although more robust to the network topology, decentralized learning schemes have not gained the same level of popularity as their centralized counterparts for being less competitive performance-wise. In this work, we attribute this issue to the lack of synchronization among decentralized learning workers, showing both empirically and theoretically that the convergence rate is tied to the synchronization level among the workers. Such motivated, we present a novel decentralized learning framework based on nonlinear gossiping (NGO), that enjoys an appealing finite-time consensus property to achieve better synchronization. We provide a careful analysis of its convergence and discuss its merits for modern distributed optimization applications, such as deep neural networks. Our analysis on how communication delay and randomized chats affect learning further enables the derivation of practical variants that accommodate asynchronous and randomized communications. To validate the effectiveness of our proposal, we benchmark NGO against competing solutions through an extensive set of tests, with encouraging results reported.
Gaussian processes (GPs) are non-parametric Bayesian models that are widely used for diverse prediction tasks. Previous work in adding strong privacy protection to GPs via differential privacy (DP) has been limited to protecting only the privacy of the prediction targets (model outputs) but not inputs. We break this limitation by introducing GPs with DP protection for both model inputs and outputs. We achieve this by using sparse GP methodology and publishing a private variational approximation on known inducing points. The approximation covariance is adjusted to approximately account for the added uncertainty from DP noise. The approximation can be used to compute arbitrary predictions using standard sparse GP techniques. We propose a method for hyperparameter learning using a private selection protocol applied to validation set log-likelihood. Our experiments demonstrate that given sufficient amount of data, the method can produce accurate models under strong privacy protection.
Edge federated learning (FL) is an emerging paradigm that trains a global parametric model from distributed datasets based on wireless communications. This paper proposes a unit-modulus over-the-air computation (UMAirComp) framework to facilitate efficient edge federated learning, which simultaneously uploads local model parameters and updates global model parameters via analog beamforming. The proposed framework avoids sophisticated baseband signal processing, leading to low communication delays and implementation costs. Training loss bounds of UMAirComp FL systems are derived and two low-complexity large-scale optimization algorithms, termed penalty alternating minimization (PAM) and accelerated gradient projection (AGP), are proposed to minimize the nonconvex nonsmooth loss bound. Simulation results show that the proposed UMAirComp framework with PAM algorithm achieves a smaller mean square error of model parameters' estimation, training loss, and test error compared with other benchmark schemes. Moreover, the proposed UMAirComp framework with AGP algorithm achieves satisfactory performance while reduces the computational complexity by orders of magnitude compared with existing optimization algorithms. Finally, we demonstrate the implementation of UMAirComp in a vehicle-to-everything autonomous driving simulation platform. It is found that autonomous driving tasks are more sensitive to model parameter errors than other tasks since the neural networks for autonomous driving contain sparser model parameters.
Federated meta-learning (FML) has emerged as a promising paradigm to cope with the data limitation and heterogeneity challenges in today's edge learning arena. However, its performance is often limited by slow convergence and corresponding low communication efficiency. In addition, since the available radio spectrum and IoT devices' energy capacity are usually insufficient, it is crucial to control the resource allocation and energy consumption when deploying FML in practical wireless networks. To overcome the challenges, in this paper, we rigorously analyze each device's contribution to the global loss reduction in each round and develop an FML algorithm (called NUFM) with a non-uniform device selection scheme to accelerate the convergence. After that, we formulate a resource allocation problem integrating NUFM in multi-access wireless systems to jointly improve the convergence rate and minimize the wall-clock time along with energy cost. By deconstructing the original problem step by step, we devise a joint device selection and resource allocation strategy to solve the problem with theoretical guarantees. Further, we show that the computational complexity of NUFM can be reduced from $O(d^2)$ to $O(d)$ (with the model dimension $d$) via combining two first-order approximation techniques. Extensive simulation results demonstrate the effectiveness and superiority of the proposed methods in comparison with existing baselines.
There has been a surge of interest in continual learning and federated learning, both of which are important in deep neural networks in real-world scenarios. Yet little research has been done regarding the scenario where each client learns on a sequence of tasks from a private local data stream. This problem of federated continual learning poses new challenges to continual learning, such as utilizing knowledge from other clients, while preventing interference from irrelevant knowledge. To resolve these issues, we propose a novel federated continual learning framework, Federated Weighted Inter-client Transfer (FedWeIT), which decomposes the network weights into global federated parameters and sparse task-specific parameters, and each client receives selective knowledge from other clients by taking a weighted combination of their task-specific parameters. FedWeIT minimizes interference between incompatible tasks, and also allows positive knowledge transfer across clients during learning. We validate our \emph{FedWeIT}~against existing federated learning and continual learning methods under varying degrees of task similarity across clients, and our model significantly outperforms them with a large reduction in the communication cost.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
Train machine learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to three issues. First, the noisy data is close to its original value with high probability, increasing the risk of information exposure. Second, a large variance is introduced to the estimated average, causing poor accuracy. Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It is capable of making the data more distinct from its original value and introducing lower variance. Moreover, the proposed mechanism bypasses the curse of dimensionality by splitting and shuffling model updates. A series of empirical evaluations on three commonly used datasets, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.
Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.
Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.
Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.