亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Offline reinforcement learning (RL) is challenged by the distributional shift problem. To address this problem, existing works mainly focus on designing sophisticated policy constraints between the learned policy and the behavior policy. However, these constraints are applied equally to well-performing and inferior actions through uniform sampling, which might negatively affect the learned policy. To alleviate this issue, we propose Offline Prioritized Experience Replay (OPER), featuring a class of priority functions designed to prioritize highly-rewarding transitions, making them more frequently visited during training. Through theoretical analysis, we show that this class of priority functions induce an improved behavior policy, and when constrained to this improved policy, a policy-constrained offline RL algorithm is likely to yield a better solution. We develop two practical strategies to obtain priority weights by estimating advantages based on a fitted value network (OPER-A) or utilizing trajectory returns (OPER-R) for quick computation. OPER is a plug-and-play component for offline RL algorithms. As case studies, we evaluate OPER on five different algorithms, including BC, TD3+BC, Onestep RL, CQL, and IQL. Extensive experiments demonstrate that both OPER-A and OPER-R significantly improve the performance for all baseline methods. Codes and priority weights are availiable at //github.com/sail-sg/OPER.

相關內容

In this paper, we introduce a conformal prediction method to construct prediction sets in a oneshot federated learning setting. More specifically, we define a quantile-of-quantiles estimator and prove that for any distribution, it is possible to output prediction sets with desired coverage in only one round of communication. To mitigate privacy issues, we also describe a locally differentially private version of our estimator. Finally, over a wide range of experiments, we show that our method returns prediction sets with coverage and length very similar to those obtained in a centralized setting. Overall, these results demonstrate that our method is particularly well-suited to perform conformal predictions in a one-shot federated learning setting.

Pick-up and Delivery Route Prediction (PDRP), which aims to estimate the future service route of a worker given his current task pool, has received rising attention in recent years. Deep neural networks based on supervised learning have emerged as the dominant model for the task because of their powerful ability to capture workers' behavior patterns from massive historical data. Though promising, they fail to introduce the non-differentiable test criteria into the training process, leading to a mismatch in training and test criteria. Which considerably trims down their performance when applied in practical systems. To tackle the above issue, we present the first attempt to generalize Reinforcement Learning (RL) to the route prediction task, leading to a novel RL-based framework called DRL4Route. It combines the behavior-learning abilities of previous deep learning models with the non-differentiable objective optimization ability of reinforcement learning. DRL4Route can serve as a plug-and-play component to boost the existing deep learning models. Based on the framework, we further implement a model named DRL4Route-GAE for PDRP in logistic service. It follows the actor-critic architecture which is equipped with a Generalized Advantage Estimator that can balance the bias and variance of the policy gradient estimates, thus achieving a more optimal policy. Extensive offline experiments and the online deployment show that DRL4Route-GAE improves Location Square Deviation (LSD) by 0.9%-2.7%, and Accuracy@3 (ACC@3) by 2.4%-3.2% over existing methods on the real-world dataset.

Multi-agent reinforcement learning (MARL) has achieved promising results in recent years. However, most existing reinforcement learning methods require a large amount of data for model training. In addition, data-efficient reinforcement learning requires the construction of strong inductive biases, which are ignored in the current MARL approaches. Inspired by the symmetry phenomenon in multi-agent systems, this paper proposes a framework for exploiting prior knowledge by integrating data augmentation and a well-designed consistency loss into the existing MARL methods. In addition, the proposed framework is model-agnostic and can be applied to most of the current MARL algorithms. Experimental tests on multiple challenging tasks demonstrate the effectiveness of the proposed framework. Moreover, the proposed framework is applied to a physical multi-robot testbed to show its superiority.

In many real-world multi-agent cooperative tasks, due to high cost and risk, agents cannot continuously interact with the environment and collect experiences during learning, but have to learn from offline datasets. However, the transition dynamics in the dataset of each agent can be much different from the ones induced by the learned policies of other agents in execution, creating large errors in value estimates. Consequently, agents learn uncoordinated low-performing policies. In this paper, we propose a framework for offline decentralized multi-agent reinforcement learning, which exploits value deviation and transition normalization to deliberately modify the transition probabilities. Value deviation optimistically increases the transition probabilities of high-value next states, and transition normalization normalizes the transition probabilities of next states. They together enable agents to learn high-performing and coordinated policies. Theoretically, we prove the convergence of Q-learning under the altered non-stationary transition dynamics. Empirically, we show that the framework can be easily built on many existing offline reinforcement learning algorithms and achieve substantial improvement in a variety of multi-agent tasks.

Natural language instruction following is paramount to enable collaboration between artificial agents and human beings. Natural language-conditioned reinforcement learning (RL) agents have shown how natural languages' properties, such as compositionality, can provide a strong inductive bias to learn complex policies. Previous architectures like HIGhER combine the benefit of language-conditioning with Hindsight Experience Replay (HER) to deal with sparse rewards environments. Yet, like HER, HIGhER relies on an oracle predicate function to provide a feedback signal highlighting which linguistic description is valid for which state. This reliance on an oracle limits its application. Additionally, HIGhER only leverages the linguistic information contained in successful RL trajectories, thus hurting its final performance and data-efficiency. Without early successful trajectories, HIGhER is no better than DQN upon which it is built. In this paper, we propose the Emergent Textual Hindsight Experience Replay (ETHER) agent, which builds on HIGhER and addresses both of its limitations by means of (i) a discriminative visual referential game, commonly studied in the subfield of Emergent Communication (EC), used here as an unsupervised auxiliary task and (ii) a semantic grounding scheme to align the emergent language with the natural language of the instruction-following benchmark. We show that the referential game's agents make an artificial language emerge that is aligned with the natural-like language used to describe goals in the BabyAI benchmark and that it is expressive enough so as to also describe unsuccessful RL trajectories and thus provide feedback to the RL agent to leverage the linguistic, structured information contained in all trajectories. Our work shows that EC is a viable unsupervised auxiliary task for RL and provides missing pieces to make HER more widely applicable.

This study proposes a self-learning algorithm for closed-loop cylinder wake control targeting lower drag and lower lift fluctuations with the additional challenge of sparse sensor information, taking deep reinforcement learning as the starting point. DRL performance is significantly improved by lifting the sensor signals to dynamic features (DF), which predict future flow states. The resulting dynamic feature-based DRL (DF-DRL) automatically learns a feedback control in the plant without a dynamic model. Results show that the drag coefficient of the DF-DRL model is 25% less than the vanilla model based on direct sensor feedback. More importantly, using only one surface pressure sensor, DF-DRL can reduce the drag coefficient to a state-of-the-art performance of about 8% at Re = 100 and significantly mitigate lift coefficient fluctuations. Hence, DF-DRL allows the deployment of sparse sensing of the flow without degrading the control performance. This method also shows good robustness in controlling flow under higher Reynolds numbers, which reduces the drag coefficient by 32.2% and 46.55% at Re = 500 and 1000, respectively, indicating the broad applicability of the method. Since surface pressure information is more straightforward to measure in realistic scenarios than flow velocity information, this study provides a valuable reference for experimentally designing the active flow control of a circular cylinder based on wall pressure signals, which is an essential step toward further developing intelligent control in realistic multi-input multi-output (MIMO) system.

We consider estimation and inference with data collected from episodic reinforcement learning (RL) algorithms; i.e. adaptive experimentation algorithms that at each period (aka episode) interact multiple times in a sequential manner with a single treated unit. Our goal is to be able to evaluate counterfactual adaptive policies after data collection and to estimate structural parameters such as dynamic treatment effects, which can be used for credit assignment (e.g. what was the effect of the first period action on the final outcome). Such parameters of interest can be framed as solutions to moment equations, but not minimizers of a population loss function, leading to $Z$-estimation approaches in the case of static data. However, such estimators fail to be asymptotically normal in the case of adaptive data collection. We propose a re-weighted $Z$-estimation approach with carefully designed adaptive weights to stabilize the episode-varying estimation variance, which results from the nonstationary policy that typical episodic RL algorithms invoke. We identify proper weighting schemes to restore the consistency and asymptotic normality of the re-weighted Z-estimators for target parameters, which allows for hypothesis testing and constructing uniform confidence regions for target parameters of interest. Primary applications include dynamic treatment effect estimation and dynamic off-policy evaluation.

Rather than traditional position control, impedance control is preferred to ensure the safe operation of industrial robots programmed from demonstrations. However, variable stiffness learning studies have focused on task performance rather than safety (or compliance). Thus, this paper proposes a novel stiffness learning method to satisfy both task performance and compliance requirements. The proposed method optimizes the task and compliance objectives (T/C objectives) simultaneously via multi-objective Bayesian optimization. We define the stiffness search space by segmenting a demonstration into task phases, each with constant responsible stiffness. The segmentation is performed by identifying impedance control-aware switching linear dynamics (IC-SLD) from the demonstration. We also utilize the stiffness obtained by proposed IC-SLD as priors for efficient optimization. Experiments on simulated tasks and a real robot demonstrate that IC-SLD-based segmentation and the use of priors improve the optimization efficiency compared to existing baseline methods.

We propose the Thinker algorithm, a novel approach that enables reinforcement learning agents to autonomously interact with and utilize a learned world model. The Thinker algorithm wraps the environment with a world model and introduces new actions designed for interacting with the world model. These model-interaction actions enable agents to perform planning by proposing alternative plans to the world model before selecting a final action to execute in the environment. This approach eliminates the need for hand-crafted planning algorithms by enabling the agent to learn how to plan autonomously and allows for easy interpretation of the agent's plan with visualization. We demonstrate the algorithm's effectiveness through experimental results in the game of Sokoban and the Atari 2600 benchmark, where the Thinker algorithm achieves state-of-the-art performance and competitive results, respectively. Visualizations of agents trained with the Thinker algorithm demonstrate that they have learned to plan effectively with the world model to select better actions. The algorithm's generality opens a new research direction on how a world model can be used in reinforcement learning and how planning can be seamlessly integrated into an agent's decision-making process.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司