亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Optimal Transport (OT) problem investigates a transport map that bridges two distributions while minimizing a given cost function. In this regard, OT between tractable prior distribution and data has been utilized for generative modeling tasks. However, OT-based methods are susceptible to outliers and face optimization challenges during training. In this paper, we propose a novel generative model based on the semi-dual formulation of Unbalanced Optimal Transport (UOT). Unlike OT, UOT relaxes the hard constraint on distribution matching. This approach provides better robustness against outliers, stability during training, and faster convergence. We validate these properties empirically through experiments. Moreover, we study the theoretical upper-bound of divergence between distributions in UOT. Our model outperforms existing OT-based generative models, achieving FID scores of 2.97 on CIFAR-10 and 5.80 on CelebA-HQ-256. The code is available at \url{//github.com/Jae-Moo/UOTM}.

相關內容

Due to the ever-increasing complexity of income tax laws in the United States, the number of US taxpayers filing their taxes using tax preparation software (henceforth, tax software) continues to increase. According to the U.S. Internal Revenue Service (IRS), in FY22, nearly 50% of taxpayers filed their individual income taxes using tax software. Given the legal consequences of incorrectly filing taxes for the taxpayer, ensuring the correctness of tax software is of paramount importance. Metamorphic testing has emerged as a leading solution to test and debug legal-critical tax software due to the absence of correctness requirements and trustworthy datasets. The key idea behind metamorphic testing is to express the properties of a system in terms of the relationship between one input and its slightly metamorphosed twinned input. Extracting metamorphic properties from IRS tax publications is a tedious and time-consuming process. As a response, this paper formulates the task of generating metamorphic specifications as a translation task between properties extracted from tax documents - expressed in natural language - to a contrastive first-order logic form. We perform a systematic analysis on the potential and limitations of in-context learning with Large Language Models(LLMs) for this task, and outline a research agenda towards automating the generation of metamorphic specifications for tax preparation software.

QR decomposition is an essential operation for solving linear equations and obtaining least-squares solutions. In high-performance computing systems, large-scale parallel QR decomposition often faces node faults. We address this issue by proposing a fault-tolerant algorithm that incorporates `coded computing' into the parallel Gram-Schmidt method, commonly used for QR decomposition. Coded computing introduces error-correcting codes into computational processes to enhance resilience against intermediate failures. While traditional coding strategies cannot preserve the orthogonality of $Q$, recent work has proven a post-orthogonalization condition that allows low-cost restoration of the degraded orthogonality. In this paper, we construct a checksum-generator matrix for multiple-node failures that satisfies the post-orthogonalization condition and prove that our code satisfies the maximum-distance separable (MDS) property with high probability. Furthermore, we consider in-node checksum storage setting where checksums are stored in original nodes. We obtain the minimal number of checksums required to be resilient to any $f$ failures under the in-node checksum storage, and also propose an in-node systematic MDS coding strategy that achieves the lower bound. Extensive experiments validate our theories and showcase the negligible overhead of our coded computing framework for fault-tolerant QR decomposition.

State transformation problems such as compressing quantum information or breaking quantum commitments are fundamental quantum tasks. However, their computational difficulty cannot easily be characterized using traditional complexity theory, which focuses on tasks with classical inputs and outputs. To study the complexity of such state transformation tasks, we introduce a framework for unitary synthesis problems, including notions of reductions and unitary complexity classes. We use this framework to study the complexity of transforming one entangled state into another via local operations. We formalize this as the Uhlmann Transformation Problem, an algorithmic version of Uhlmann's theorem. Then, we prove structural results relating the complexity of the Uhlmann Transformation Problem, polynomial space quantum computation, and zero knowledge protocols. The Uhlmann Transformation Problem allows us to characterize the complexity of a variety of tasks in quantum information processing, including decoding noisy quantum channels, breaking falsifiable quantum cryptographic assumptions, implementing optimal prover strategies in quantum interactive proofs, and decoding the Hawking radiation of black holes. Our framework for unitary complexity thus provides new avenues for studying the computational complexity of many natural quantum information processing tasks.

Quantum programs are notoriously difficult to code and verify due to unintuitive quantum knowledge associated with quantum programming. Automated tools relieving the tedium and errors associated with low-level quantum details would hence be highly desirable. In this paper, we initiate the study of program synthesis for quantum unitary programs that recursively define a family of unitary circuits for different input sizes, which are widely used in existing quantum programming languages. Specifically, we present QSynth, the first quantum program synthesis framework, including a new inductive quantum programming language, its specification, a sound logic for reasoning, and an encoding of the reasoning procedure into SMT instances. By leveraging existing SMT solvers, QSynth successfully synthesizes ten quantum unitary programs including quantum adder circuits, quantum eigenvalue inversion circuits and Quantum Fourier Transformation, which can be readily transpiled to executable programs on major quantum platforms, e.g., Q#, IBM Qiskit, and AWS Braket.

We conduct a thorough study of different forms of horizontally explicit and vertically implicit (HEVI) time-integration strategies for the compressible Euler equations on spherical domains typical of nonhydrostatic global atmospheric applications. We compare the computational time and complexity of two nonlinear variants (NHEVI-GMRES and NHEVI-LU) and a linear variant (LHEVI). We report on the performance of these three variants for a number of additive Runge-Kutta Methods ranging in order of accuracy from second through fifth, and confirm the expected order of accuracy of the HEVI methods for each time-integrator. To gauge the maximum usable time-step of each HEVI method, we run simulations of a nonhydrostatic baroclinic instability for 100 days and then use this time-step to compare the time-to-solution of each method. The results show that NHEVI-LU is 2x faster than NHEVI-GMRES, and LHEVI is 5x faster than NHEVI-LU, for the idealized cases tested. The baroclinic instability and inertia-gravity wave simulations indicate that the optimal choice of time-integrator is LHEVI with either second or third order schemes, as both schemes yield similar time to solution and relative L2 error at their maximum usable time-steps. In the future, we will report on whether these results hold for more complex problems using, e.g., real atmospheric data and/or a higher model top typical of space weather applications.

Fast Hough transform is a widely used algorithm in pattern recognition. The algorithm relies on approximating lines using a specific discrete line model called dyadic lines. The worst-case deviation of a dyadic line from the ideal line it used to construct grows as $O(log(n))$, where $n$ is the linear size of the image. But few lines actually reach the worst-case bound. The present paper addresses a statistical analysis of the deviation of a dyadic line from its ideal counterpart. Specifically, our findings show that the mean deviation is zero, and the variance grows as $O(log(n))$. As $n$ increases, the distribution of these (suitably normalized) deviations converges towards a normal distribution with zero mean and a small variance. This limiting result makes an essential use of ergodic theory.

We propose an efficient semi-Lagrangian characteristic mapping method for solving the one+one-dimensional Vlasov-Poisson equations with high precision on a coarse grid. The flow map is evolved numerically and exponential resolution in linear time is obtained. Global third-order convergence in space and time is shown and conservation properties are assessed. For benchmarking, we consider linear and nonlinear Landau damping and the two-stream instability. We compare the results with a Fourier pseudo-spectral method. The extreme fine-scale resolution features are illustrated showing the method's capabilities to efficiently treat filamentation in fusion plasma simulations.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

北京阿比特科技有限公司