Model-based methods have recently shown great potential for off-policy evaluation (OPE); offline trajectories induced by behavioral policies are fitted to transitions of Markov decision processes (MDPs), which are used to rollout simulated trajectories and estimate the performance of policies. Model-based OPE methods face two key challenges. First, as offline trajectories are usually fixed, they tend to cover limited state and action space. Second, the performance of model-based methods can be sensitive to the initialization of their parameters. In this work, we propose the variational latent branching model (VLBM) to learn the transition function of MDPs by formulating the environmental dynamics as a compact latent space, from which the next states and rewards are then sampled. Specifically, VLBM leverages and extends the variational inference framework with the recurrent state alignment (RSA), which is designed to capture as much information underlying the limited training data, by smoothing out the information flow between the variational (encoding) and generative (decoding) part of VLBM. Moreover, we also introduce the branching architecture to improve the model's robustness against randomly initialized model weights. The effectiveness of the VLBM is evaluated on the deep OPE (DOPE) benchmark, from which the training trajectories are designed to result in varied coverage of the state-action space. We show that the VLBM outperforms existing state-of-the-art OPE methods in general.
Deep hashing has been extensively applied to massive image retrieval due to its efficiency and effectiveness. Recently, several adversarial attacks have been presented to reveal the vulnerability of deep hashing models against adversarial examples. However, existing attack methods suffer from degraded performance or inefficiency because they underutilize the semantic relations between original samples or spend a lot of time learning these relations with a deep neural network. In this paper, we propose a novel Pharos-guided Attack, dubbed PgA, to evaluate the adversarial robustness of deep hashing networks reliably and efficiently. Specifically, we design pharos code to represent the semantics of the benign image, which preserves the similarity to semantically relevant samples and dissimilarity to irrelevant ones. It is proven that we can quickly calculate the pharos code via a simple math formula. Accordingly, PgA can directly conduct a reliable and efficient attack on deep hashing-based retrieval by maximizing the similarity between the hash code of the adversarial example and the pharos code. Extensive experiments on the benchmark datasets verify that the proposed algorithm outperforms the prior state-of-the-arts in both attack strength and speed.
State-of-the-art machine learning models often learn spurious correlations embedded in the training data. This poses risks when deploying these models for high-stake decision-making, such as in medical applications like skin cancer detection. To tackle this problem, we propose Reveal to Revise (R2R), a framework entailing the entire eXplainable Artificial Intelligence (XAI) life cycle, enabling practitioners to iteratively identify, mitigate, and (re-)evaluate spurious model behavior with a minimal amount of human interaction. In the first step (1), R2R reveals model weaknesses by finding outliers in attributions or through inspection of latent concepts learned by the model. Secondly (2), the responsible artifacts are detected and spatially localized in the input data, which is then leveraged to (3) revise the model behavior. Concretely, we apply the methods of RRR, CDEP and ClArC for model correction, and (4) (re-)evaluate the model's performance and remaining sensitivity towards the artifact. Using two medical benchmark datasets for Melanoma detection and bone age estimation, we apply our R2R framework to VGG, ResNet and EfficientNet architectures and thereby reveal and correct real dataset-intrinsic artifacts, as well as synthetic variants in a controlled setting. Completing the XAI life cycle, we demonstrate multiple R2R iterations to mitigate different biases. Code is available on //github.com/maxdreyer/Reveal2Revise.
Understanding dynamics in complex systems is challenging because there are many degrees of freedom, and those that are most important for describing events of interest are often not obvious. The leading eigenfunctions of the transition operator are useful for visualization, and they can provide an efficient basis for computing statistics such as the likelihood and average time of events (predictions). Here we develop inexact iterative linear algebra methods for computing these eigenfunctions (spectral estimation) and making predictions from a data set of short trajectories sampled at finite intervals. We demonstrate the methods on a low-dimensional model that facilitates visualization and a high-dimensional model of a biomolecular system. Implications for the prediction problem in reinforcement learning are discussed.
Understanding and controlling latent representations in deep generative models is a challenging yet important problem for analyzing, transforming and generating various types of data. In speech processing, inspiring from the anatomical mechanisms of phonation, the source-filter model considers that speech signals are produced from a few independent and physically meaningful continuous latent factors, among which the fundamental frequency $f_0$ and the formants are of primary importance. In this work, we start from a variational autoencoder (VAE) trained in an unsupervised manner on a large dataset of unlabeled natural speech signals, and we show that the source-filter model of speech production naturally arises as orthogonal subspaces of the VAE latent space. Using only a few seconds of labeled speech signals generated with an artificial speech synthesizer, we propose a method to identify the latent subspaces encoding $f_0$ and the first three formant frequencies, we show that these subspaces are orthogonal, and based on this orthogonality, we develop a method to accurately and independently control the source-filter speech factors within the latent subspaces. Without requiring additional information such as text or human-labeled data, this results in a deep generative model of speech spectrograms that is conditioned on $f_0$ and the formant frequencies, and which is applied to the transformation speech signals. Finally, we also propose a robust $f_0$ estimation method that exploits the projection of a speech signal onto the learned latent subspace associated with $f_0$.
With the development of deep learning, advanced dialogue generation methods usually require a greater amount of computational resources. One promising approach to obtaining a high-performance and lightweight model is knowledge distillation, which relies heavily on the pre-trained powerful teacher. Collaborative learning, also known as online knowledge distillation, is an effective way to conduct one-stage group distillation in the absence of a well-trained large teacher model. However, previous work has a severe branch homogeneity problem due to the same training objective and the independent identical training sets. To alleviate this problem, we consider the dialogue attributes in the training of network branches. Each branch learns the attribute-related features based on the selected subset. Furthermore, we propose a dual group-based knowledge distillation method, consisting of positive distillation and negative distillation, to further diversify the features of different branches in a steadily and interpretable way. The proposed approach significantly improves branch heterogeneity and outperforms state-of-the-art collaborative learning methods on two widely used open-domain dialogue datasets.
Code-switching speech refers to a means of expression by mixing two or more languages within a single utterance. Automatic Speech Recognition (ASR) with End-to-End (E2E) modeling for such speech can be a challenging task due to the lack of data. In this study, we investigate text generation and injection for improving the performance of an industry commonly-used streaming model, Transformer-Transducer (T-T), in Mandarin-English code-switching speech recognition. We first propose a strategy to generate code-switching text data and then investigate injecting generated text into T-T model explicitly by Text-To-Speech (TTS) conversion or implicitly by tying speech and text latent spaces. Experimental results on the T-T model trained with a dataset containing 1,800 hours of real Mandarin-English code-switched speech show that our approaches to inject generated code-switching text significantly boost the performance of T-T models, i.e., 16% relative Token-based Error Rate (TER) reduction averaged on three evaluation sets, and the approach of tying speech and text latent spaces is superior to that of TTS conversion on the evaluation set which contains more homogeneous data with the training set.
We consider the problem of state estimation from $m$ linear measurements, where the state $u$ to recover is an element of the manifold $\mathcal{M}$ of solutions of a parameter-dependent equation. The state is estimated using a prior knowledge on $\mathcal{M}$ coming from model order reduction. Variational approaches based on linear approximation of $\mathcal{M}$, such as PBDW, yields a recovery error limited by the Kolmogorov $m$-width of $\mathcal{M}$. To overcome this issue, piecewise-affine approximations of $\mathcal{M}$ have also be considered, that consist in using a library of linear spaces among which one is selected by minimizing some distance to $\mathcal{M}$. In this paper, we propose a state estimation method relying on dictionary-based model reduction, where a space is selected from a library generated by a dictionary of snapshots, using a distance to the manifold. The selection is performed among a set of candidate spaces obtained from the path of a $\ell_1$-regularized least-squares problem. Then, in the framework of parameter-dependent operator equations (or PDEs) with affine parameterizations, we provide an efficient offline-online decomposition based on randomized linear algebra, that ensures efficient and stable computations while preserving theoretical guarantees.
Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.
Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.