亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Binary codes of length $n$ may be viewed as subsets of vertices of the Boolean hypercube $\{0,1\}^n$. The ability of a linear error-correcting code to recover erasures is connected to influences of particular monotone Boolean functions. These functions provide insight into the role that particular coordinates play in a code's erasure repair capability. In this paper, we consider directly the influences of coordinates of a code. We describe a family of codes, called codes with minimum disjoint support, for which all influences may be determined. As a consequence, we find influences of repetition codes and certain distinct weight codes. Computing influences is typically circumvented by appealing to the transitivity of the automorphism group of the code. Some of the codes considered here fail to meet the transitivity conditions requires for these standard approaches, yet we can compute them directly.

相關內容

代碼(Code)是專知網的一個重要知識資料文檔板塊,旨在整理收錄論文源代碼、復現代碼,經典工程代碼等,便于用戶查閱下載使用。

Assuming the Exponential Time Hypothesis (ETH), a result of Marx (ToC'10) implies that there is no $f(k)\cdot n^{o(k/\log k)}$ time algorithm that can solve 2-CSPs with $k$ constraints (over a domain of arbitrary large size $n$) for any computable function $f$. This lower bound is widely used to show that certain parameterized problems cannot be solved in time $f(k)\cdot n^{o(k/\log k)}$ time (assuming the ETH). The purpose of this note is to give a streamlined proof of this result.

ANOVA decomposition of function with random input variables provides ANOVA functionals (AFs), which contain information about the contributions of the input variables on the output variable(s). By embedding AFs into an appropriate reproducing kernel Hilbert space regarding their distributions, we propose an efficient statistical test of independence between the input variables and output variable(s). The resulting test statistic leads to new dependent measures of association between inputs and outputs that allow for i) dealing with any distribution of AFs, including the Cauchy distribution, ii) accounting for the necessary or desirable moments of AFs and the interactions among the input variables. In uncertainty quantification for mathematical models, a number of existing measures are special cases of this framework. We then provide unified and general global sensitivity indices and their consistent estimators, including asymptotic distributions. For Gaussian-distributed AFs, we obtain Sobol' indices and dependent generalized sensitivity indices using quadratic kernels.

For the numerical solution of the cubic nonlinear Schr\"{o}dinger equation with periodic boundary conditions, a pseudospectral method in space combined with a filtered Lie splitting scheme in time is considered. This scheme is shown to converge even for initial data with very low regularity. In particular, for data in $H^s(\mathbb T^2)$, where $s>0$, convergence of order $\mathcal O(\tau^{s/2}+N^{-s})$ is proved in $L^2$. Here $\tau$ denotes the time step size and $N$ the number of Fourier modes considered. The proof of this result is carried out in an abstract framework of discrete Bourgain spaces, the final convergence result, however, is given in $L^2$. The stated convergence behavior is illustrated by several numerical examples.

We present a new Krylov subspace recycling method for solving a linear system of equations, or a sequence of slowly changing linear systems. Our new method, named GMRES-SDR, combines randomized sketching and deflated restarting in a way that avoids orthogononalizing a full Krylov basis. We provide new theory which characterizes sketched GMRES with and without augmentation as a projection method using a semi-inner product. We present results of numerical experiments demonstrating the effectiveness of GMRES-SDR over competitor methods such as GMRES-DR and GCRO-DR.

We construct and analyze finite element approximations of the Einstein tensor in dimension $N \ge 3$. We focus on the setting where a smooth Riemannian metric tensor $g$ on a polyhedral domain $\Omega \subset \mathbb{R}^N$ has been approximated by a piecewise polynomial metric $g_h$ on a simplicial triangulation $\mathcal{T}$ of $\Omega$ having maximum element diameter $h$. We assume that $g_h$ possesses single-valued tangential-tangential components on every codimension-1 simplex in $\mathcal{T}$. Such a metric is not classically differentiable in general, but it turns out that one can still attribute meaning to its Einstein curvature in a distributional sense. We study the convergence of the distributional Einstein curvature of $g_h$ to the Einstein curvature of $g$ under refinement of the triangulation. We show that in the $H^{-2}(\Omega)$-norm, this convergence takes place at a rate of $O(h^{r+1})$ when $g_h$ is an optimal-order interpolant of $g$ that is piecewise polynomial of degree $r \ge 1$. We provide numerical evidence to support this claim.

We provide numerical bounds on the Crouzeix ratiofor KLS matrices $A$ which have a line segment on the boundary of the numerical range. The Crouzeix ratio is the supremum over all polynomials $p$ of the spectral norm of $p(A)$ dividedby the maximum absolute value of $p$ on the numerical range of $A$.Our bounds confirm the conjecture that this ratiois less than or equal to $2$. We also give a precise description of these numerical ranges.

We study the convergence of specific inexact alternating projections for two non-convex sets in a Euclidean space. The $\sigma$-quasioptimal metric projection ($\sigma \geq 1$) of a point $x$ onto a set $A$ consists of points in $A$ the distance to which is at most $\sigma$ times larger than the minimal distance $\mathrm{dist}(x,A)$. We prove that quasioptimal alternating projections, when one or both projections are quasioptimal, converge locally and linearly for super-regular sets with transversal intersection. The theory is motivated by the successful application of alternating projections to low-rank matrix and tensor approximation. We focus on two problems -- nonnegative low-rank approximation and low-rank approximation in the maximum norm -- and develop fast alternating-projection algorithms for matrices and tensor trains based on cross approximation and acceleration techniques. The numerical experiments confirm that the proposed methods are efficient and suggest that they can be used to regularise various low-rank computational routines.

When the signal does not have a sparse structure but has sparsity under a certain transformation domain, Nam et al. \cite{NS} introduced the cosparse analysis model, which provides a dual perspective on the sparse representation model. This paper mainly discusses the error estimation of non-convex $\ell_p(0<p<1)$ relaxation cosparse optimization model with noise condition. Compared with the existing literature, under the same conditions, the value range of the $\Omega$-RIP constant $\delta_{7s}$ given in this paper is wider. When $p=0.5$ and $\delta_{7s}=0.5$, the error constants $C_0$ and $C_1$ in this paper are better than those corresponding results in the literature \cite{Cand,LiSong1}. Moreover, when $0<p<1$, the error results of the non-convex relaxation method are significantly smaller than those of the convex relaxation method. The experimental results verify the correctness of the theoretical analysis and illustrate that the $\ell_p(0<p<1)$ method can provide robust reconstruction for cosparse optimization problems.

We present two new positive results for reliable computation using formulas over physical alphabets of size $q > 2$. First, we show that for logical alphabets of size $\ell = q$ the threshold for denoising using gates subject to $q$-ary symmetric noise with error probability $\varepsilon$ is strictly larger than that for Boolean computation, and is possible as long as signals remain distinguishable, i.e. $\epsilon < (q - 1) / q$, in the limit of large fan-in $k \rightarrow \infty$. We also determine the point at which generalized majority gates with bounded fan-in fail, and show in particular that reliable computation is possible for $\epsilon < (q - 1) / (q (q + 1))$ in the case of $q$ prime and fan-in $k = 3$. Secondly, we provide an example where $\ell < q$, showing that reliable Boolean computation can be performed using $2$-input ternary logic gates subject to symmetric ternary noise of strength $\varepsilon < 1/6$ by using the additional alphabet element for error signaling.

The classical Zarankiewicz's problem asks for the maximum number of edges in a bipartite graph on $n$ vertices which does not contain the complete bipartite graph $K_{t,t}$. In one of the cornerstones of extremal graph theory, K\H{o}v\'ari S\'os and Tur\'an proved an upper bound of $O(n^{2-\frac{1}{t}})$. In a celebrated result, Fox et al. obtained an improved bound of $O(n^{2-\frac{1}{d}})$ for graphs of VC-dimension $d$ (where $d<t$). Basit, Chernikov, Starchenko, Tao and Tran improved the bound for the case of semilinear graphs. At SODA'23, Chan and Har-Peled further improved Basit et al.'s bounds and presented (quasi-)linear upper bounds for several classes of geometrically-defined incidence graphs, including a bound of $O(n \log \log n)$ for the incidence graph of points and pseudo-discs in the plane. In this paper we present a new approach to Zarankiewicz's problem, via $\epsilon$-t-nets - a recently introduced generalization of the classical notion of $\epsilon$-nets. We show that the existence of `small'-sized $\epsilon$-t-nets implies upper bounds for Zarankiewicz's problem. Using the new approach, we obtain a sharp bound of $O(n)$ for the intersection graph of two families of pseudo-discs, thus both improving and generalizing the result of Chan and Har-Peled from incidence graphs to intersection graphs. We also obtain a short proof of the $O(n^{2-\frac{1}{d}})$ bound of Fox et al., and show improved bounds for several other classes of geometric intersection graphs, including a sharp $O(n\frac{\log n}{\log \log n})$ bound for the intersection graph of two families of axis-parallel rectangles.

北京阿比特科技有限公司