亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Asymmetry along with heteroscedasticity or contamination often occurs with the growth of data dimensionality. In ultra-high dimensional data analysis, such irregular settings are usually overlooked for both theoretical and computational convenience. In this paper, we establish a framework for estimation in high-dimensional regression models using Penalized Robust Approximated quadratic M-estimators (PRAM). This framework allows general settings such as random errors lack of symmetry and homogeneity, or the covariates are not sub-Gaussian. To reduce the possible bias caused by the data's irregularity in mean regression, PRAM adopts a loss function with a flexible robustness parameter growing with the sample size. Theoretically, we first show that, in the ultra-high dimension setting, PRAM estimators have local estimation consistency at the minimax rate enjoyed by the LS-Lasso. Then we show that PRAM with an appropriate non-convex penalty in fact agrees with the local oracle solution, and thus obtain its oracle property. Computationally, we demonstrate the performances of six PRAM estimators using three types of loss functions for approximation (Huber, Tukey's biweight and Cauchy loss) combined with two types of penalty functions (Lasso and MCP). Our simulation studies and real data analysis demonstrate satisfactory finite sample performances of the PRAM estimator under general irregular settings.

相關內容

Full Waveform Inversion (FWI) is a successful and well-established inverse method for reconstructing material models from measured wave signals. In the field of seismic exploration, FWI has proven particularly successful in the reconstruction of smoothly varying material deviations. In contrast, non-destructive testing (NDT) often requires the detection and specification of sharp defects in a specimen. If the contrast between materials is low, FWI can be successfully applied to these problems as well. However, so far the method is not fully suitable to image defects such as voids, which are characterized by a high contrast in the material parameters. In this paper, we introduce a dimensionless scaling function $\gamma$ to model voids in the forward and inverse scalar wave equation problem. Depending on which material parameters this function $\gamma$ scales, different modeling approaches are presented, leading to three formulations of mono-parameter FWI and one formulation of two-parameter FWI. The resulting problems are solved by first-order optimization, where the gradient is computed by an ajdoint state method. The corresponding Fr\'echet kernels are derived for each approach and the associated minimization is performed using an L-BFGS algorithm. A comparison between the different approaches shows that scaling the density with $\gamma$ is most promising for parameterizing voids in the forward and inverse problem. Finally, in order to consider arbitrary complex geometries known a priori, this approach is combined with an immersed boundary method, the finite cell method (FCM).

Positive and unlabelled learning is an important problem which arises naturally in many applications. The significant limitation of almost all existing methods lies in assuming that the propensity score function is constant (SCAR assumption), which is unrealistic in many practical situations. Avoiding this assumption, we consider parametric approach to the problem of joint estimation of posterior probability and propensity score functions. We show that under mild assumptions when both functions have the same parametric form (e.g. logistic with different parameters) the corresponding parameters are identifiable. Motivated by this, we propose two approaches to their estimation: joint maximum likelihood method and the second approach based on alternating maximization of two Fisher consistent expressions. Our experimental results show that the proposed methods are comparable or better than the existing methods based on Expectation-Maximisation scheme.

In this paper, we investigate the matrix estimation problem in the multi-response regression model with measurement errors. A nonconvex error-corrected estimator based on a combination of the amended loss function and the nuclear norm regularizer is proposed to estimate the matrix parameter. Then under the (near) low-rank assumption, we analyse statistical and computational theoretical properties of global solutions of the nonconvex regularized estimator from a general point of view. In the statistical aspect, we establish the nonasymptotic recovery bound for any global solution of the nonconvex estimator, under restricted strong convexity on the loss function. In the computational aspect, we solve the nonconvex optimization problem via the proximal gradient method. The algorithm is proved to converge to a near-global solution and achieve a linear convergence rate. In addition, we also verify sufficient conditions for the general results to be held, in order to obtain probabilistic consequences for specific types of measurement errors, including the additive noise and missing data. Finally, theoretical consequences are demonstrated by several numerical experiments on corrupted errors-in-variables multi-response regression models. Simulation results reveal excellent consistency with our theory under high-dimensional scaling.

Traditional nonparametric estimation methods often lead to a slow convergence rate in large dimensions and require unrealistically enormous sizes of datasets for reliable conclusions. We develop an approach based on mixed gradients, either observed or estimated, to effectively estimate the function at near-parametric convergence rates. The novel approach and computational algorithm could lead to methods useful to practitioners in many areas of science and engineering. Our theoretical results reveal a behavior universal to this class of nonparametric estimation problems. We explore a general setting involving tensor product spaces and build upon the smoothing spline analysis of variance (SS-ANOVA) framework. For $d$-dimensional models under full interaction, the optimal rates with gradient information on $p$ covariates are identical to those for the $(d-p)$-interaction models without gradients and, therefore, the models are immune to the "curse of interaction". For additive models, the optimal rates using gradient information are root-$n$, thus achieving the "parametric rate". We demonstrate aspects of the theoretical results through synthetic and real data applications.

Machine learning regression methods allow estimation of functions without unrealistic parametric assumptions. Although they can perform exceptionally in prediction error, most lack theoretical convergence rates necessary for semi-parametric efficient estimation (e.g. TMLE, AIPW) of parameters like average treatment effects. The Highly Adaptive Lasso (HAL) is the only regression method proven to converge quickly enough for a meaningfully large class of functions, independent of the dimensionality of the predictors. Unfortunately, HAL is not computationally scalable. In this paper we build upon the theory of HAL to construct the Selectively Adaptive Lasso (SAL), a new algorithm which retains HAL's dimension-free, nonparametric convergence rate but which also scales computationally to massive datasets. To accomplish this, we prove some general theoretical results pertaining to empirical loss minimization in nested Donsker classes. Our resulting algorithm is a form of gradient tree boosting with an adaptive learning rate, which makes it fast and trivial to implement with off-the-shelf software. Finally, we show that our algorithm retains the performance of standard gradient boosting on a diverse group of real-world datasets. SAL makes semi-parametric efficient estimators practically possible and theoretically justifiable in many big data settings.

Obtaining reliable estimates of conditional covariance matrices is an important task of heteroskedastic multivariate time series. In portfolio optimization and financial risk management, it is crucial to provide measures of uncertainty and risk as accurately as possible. We propose using mixture vector autoregressive (MVAR) models for portfolio optimization. Combining a mixture of distributions that depend on the recent history of the process, MVAR models can accommodate asymmetry, multimodality, heteroskedasticity and cross-correlation in multivariate time series data. For mixtures of Normal components, we exploit a property of the multivariate Normal distribution to obtain explicit formulas of conditional predictive distributions of returns on a portfolio of assets. After showing how the method works, we perform a comparison with other relevant multivariate time series models on real stock return data.

We study the asymmetric matrix factorization problem under a natural nonconvex formulation with arbitrary overparametrization. The model-free setting is considered, with minimal assumption on the rank or singular values of the observed matrix, where the global optima provably overfit. We show that vanilla gradient descent with small random initialization sequentially recovers the principal components of the observed matrix. Consequently, when equipped with proper early stopping, gradient descent produces the best low-rank approximation of the observed matrix without explicit regularization. We provide a sharp characterization of the relationship between the approximation error, iteration complexity, initialization size and stepsize. Our complexity bound is almost dimension-free and depends logarithmically on the approximation error, with significantly more lenient requirements on the stepsize and initialization compared to prior work. Our theoretical results provide accurate prediction for the behavior gradient descent, showing good agreement with numerical experiments.

The precision matrix that encodes conditional linear dependency relations among a set of variables forms an important object of interest in multivariate analysis. Sparse estimation procedures for precision matrices such as the graphical lasso (Glasso) gained popularity as they facilitate interpretability, thereby separating pairs of variables that are conditionally dependent from those that are independent (given all other variables). Glasso lacks, however, robustness to outliers. To overcome this problem, one typically applies a robust plug-in procedure where the Glasso is computed from a robust covariance estimate instead of the sample covariance, thereby providing protection against outliers. In this paper, we study such estimators theoretically, by deriving and comparing their influence function, sensitivity curves and asymptotic variances.

The parameters of the log-logistic distribution are generally estimated based on classical methods such as maximum likelihood estimation, whereas these methods usually result in severe biased estimates when the data contain outliers. In this paper, we consider several alternative estimators, which not only have closed-form expressions, but also are quite robust to a certain level of data contamination. We investigate the robustness property of each estimator in terms of the breakdown point. The finite sample performance and effectiveness of these estimators are evaluated through Monte Carlo simulations and a real-data application. Numerical results demonstrate that the proposed estimators perform favorably in a manner that they are comparable with the maximum likelihood estimator for the data without contamination and that they provide superior performance in the presence of data contamination.

In this paper we introduce a new sampling and reconstruction approach for multi-dimensional analog signals. Building on top of the Unlimited Sensing Framework (USF), we present a new folded sampling operator called the multi-dimensional modulo-hysteresis that is also backwards compatible with the existing one-dimensional modulo operator. Unlike previous approaches, the proposed model is specifically tailored to multi-dimensional signals. In particular, the model uses certain redundancy in dimensions 2 and above, which is exploited for input recovery with robustness. We prove that the new operator is well-defined and its outputs have a bounded dynamic range. For the noiseless case, we derive a theoretically guaranteed input reconstruction approach. When the input is corrupted by Gaussian noise, we exploit redundancy in higher dimensions to provide a bound on the error probability and show this drops to 0 for high enough sampling rates leading to new theoretical guarantees for the noisy case. Our numerical examples corroborate the theoretical results and show that the proposed approach can handle a significantly larger amount of noise compared to USF.

北京阿比特科技有限公司