Obtaining reliable estimates of conditional covariance matrices is an important task of heteroskedastic multivariate time series. In portfolio optimization and financial risk management, it is crucial to provide measures of uncertainty and risk as accurately as possible. We propose using mixture vector autoregressive (MVAR) models for portfolio optimization. Combining a mixture of distributions that depend on the recent history of the process, MVAR models can accommodate asymmetry, multimodality, heteroskedasticity and cross-correlation in multivariate time series data. For mixtures of Normal components, we exploit a property of the multivariate Normal distribution to obtain explicit formulas of conditional predictive distributions of returns on a portfolio of assets. After showing how the method works, we perform a comparison with other relevant multivariate time series models on real stock return data.
Uncertainty quantification is crucial for assessing the predictive ability of AI algorithms. A large body of work (including normalizing flows and Bayesian neural networks) has been devoted to describing the entire predictive distribution (PD) of a target variable Y given input features $\mathbf{X}$. However, off-the-shelf PDs are usually far from being conditionally calibrated; i.e., the probability of occurrence of an event given input $\mathbf{X}$ can be significantly different from the predicted probability. Most current research on predictive inference (such as conformal prediction) concerns constructing calibrated prediction sets only. It is often believed that the problem of obtaining and assessing entire conditionally calibrated PDs is too challenging. In this work, we show that recalibration, as well as diagnostics of entire PDs, are indeed attainable goals in practice. Our proposed method relies on the idea of regressing probability integral transform (PIT) scores against $\mathbf{X}$. This regression gives full diagnostics of conditional coverage across the entire feature space and can be used to recalibrate misspecified PDs. We benchmark our corrected prediction bands against oracle bands and state-of-the-art predictive inference algorithms for synthetic data, including settings with a distributional shift. Finally, we produce calibrated PDs for two applications: (i) probabilistic nowcasting based on sequences of satellite images, and (ii) estimation of galaxy distances based on imaging data (photometric redshifts).
Recent years have seen a paradigm shift in NLP towards using pretrained language models ({PLM}) for a wide range of tasks. However, there are many difficult design decisions to represent structures (e.g. tagged text, coreference chains) in a way such that they can be captured by PLMs. Prior work on structured prediction with PLMs typically flattens the structured output into a sequence, which limits the quality of structural information being learned and leads to inferior performance compared to classic discriminative models. In this work, we describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs, allowing in-structure dependencies to be learned without any loss. Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at, namely, named entity recognition, end-to-end relation extraction, and coreference resolution.
This paper considers binary classification of high-dimensional features under a postulated model with a low-dimensional latent Gaussian mixture structure and non-vanishing noise. A generalized least squares estimator is used to estimate the direction of the optimal separating hyperplane. The estimated hyperplane is shown to interpolate on the training data. While the direction vector can be consistently estimated as could be expected from recent results in linear regression, a naive plug-in estimate fails to consistently estimate the intercept. A simple correction, that requires an independent hold-out sample, renders the procedure minimax optimal in many scenarios. The interpolation property of the latter procedure can be retained, but surprisingly depends on the way the labels are encoded.
Many applications in computational sciences and statistical inference require the computation of expectations with respect to complex high-dimensional distributions with unknown normalization constants, as well as the estimation of these constants. Here we develop a method to perform these calculations based on generating samples from a simple base distribution, transporting them by the flow generated by a velocity field, and performing averages along these flowlines. This non-equilibrium importance sampling (NEIS) strategy is straightforward to implement and can be used for calculations with arbitrary target distributions. On the theory side, we discuss how to tailor the velocity field to the target and establish general conditions under which the proposed estimator is a perfect estimator with zero-variance. We also draw connections between NEIS and approaches based on mapping a base distribution onto a target via a transport map. On the computational side, we show how to use deep learning to represent the velocity field by a neural network and train it towards the zero variance optimum. These results are illustrated numerically on benchmark examples (with dimension up to $10$), where after training the velocity field, the variance of the NEIS estimator is reduced by up to $6$ orders of magnitude than that of a vanilla estimator. We also compare the performances of NEIS with those of Neal's annealed importance sampling (AIS).
In this paper, we derive the limit of experiments for one parameter Ising models on dense regular graphs. In particular, we show that the limiting experiment is Gaussian in the low temperature regime, non Gaussian in the critical regime, and an infinite collection of Gaussians in the high temperature regime. We also derive the limiting distributions of the maximum likelihood and maximum pseudo-likelihood estimators, and study limiting power for tests of hypothesis against contiguous alternatives (whose scaling changes across the regimes). To the best of our knowledge, this is the first attempt at establishing the classical limits of experiments for Ising models (and more generally, Markov random fields).
Diffusion-based generative models are extremely effective in generating high-quality images, with generated samples often surpassing the quality of those produced by other models under several metrics. One distinguishing feature of these models, however, is that they typically require long sampling chains to produce high-fidelity images. This presents a challenge not only from the lenses of sampling time, but also from the inherent difficulty in backpropagating through these chains in order to accomplish tasks such as model inversion, i.e. approximately finding latent states that generate known images. In this paper, we look at diffusion models through a different perspective, that of a (deep) equilibrium (DEQ) fixed point model. Specifically, we extend the recent denoising diffusion implicit model (DDIM; Song et al. 2020), and model the entire sampling chain as a joint, multivariate fixed point system. This setup provides an elegant unification of diffusion and equilibrium models, and shows benefits in 1) single image sampling, as it replaces the fully-serial typical sampling process with a parallel one; and 2) model inversion, where we can leverage fast gradients in the DEQ setting to much more quickly find the noise that generates a given image. The approach is also orthogonal and thus complementary to other methods used to reduce the sampling time, or improve model inversion. We demonstrate our method's strong performance across several datasets, including CIFAR10, CelebA, and LSUN Bedrooms and Churches.
Regularized regression models are well studied and, under appropriate conditions, offer fast and statistically interpretable results. However, large data in many applications are heterogeneous in the sense of harboring distributional differences between latent groups. Then, the assumption that the conditional distribution of response Y given features X is the same for all samples may not hold. Furthermore, in scientific applications, the covariance structure of the features may contain important signals and its learning is also affected by latent group structure. We propose a class of mixture models for paired data (X, Y) that couples together the distribution of X (using sparse graphical models) and the conditional Y | X (using sparse regression models). The regression and graphical models are specific to the latent groups and model parameters are estimated jointly (hence the name "regularized joint mixtures"). This allows signals in either or both of the feature distribution and regression model to inform learning of latent structure and provides automatic control of confounding by such structure. Estimation is handled via an expectation-maximization algorithm, whose convergence is established theoretically. We illustrate the key ideas via empirical examples. An R package is available at //github.com/k-perrakis/regjmix.
We provide adaptive inference methods, based on $\ell_1$ regularization, for regular (semi-parametric) and non-regular (nonparametric) linear functionals of the conditional expectation function. Examples of regular functionals include average treatment effects, policy effects, and derivatives. Examples of non-regular functionals include average treatment effects, policy effects, and derivatives conditional on a covariate subvector fixed at a point. We construct a Neyman orthogonal equation for the target parameter that is approximately invariant to small perturbations of the nuisance parameters. To achieve this property, we include the Riesz representer for the functional as an additional nuisance parameter. Our analysis yields weak ``double sparsity robustness'': either the approximation to the regression or the approximation to the representer can be ``completely dense'' as long as the other is sufficiently ``sparse''. Our main results are non-asymptotic and imply asymptotic uniform validity over large classes of models, translating into honest confidence bands for both global and local parameters.
The problem of monotone submodular maximization has been studied extensively due to its wide range of applications. However, there are cases where one can only access the objective function in a distorted or noisy form because of the uncertain nature or the errors involved in the evaluation. This paper considers the problem of constrained monotone submodular maximization with noisy oracles introduced by [Hassidim et al., 2017]. For a cardinality constraint, we propose an algorithm achieving a near-optimal $\left(1-\frac{1}{e}-O(\varepsilon)\right)$-approximation guarantee (for arbitrary $\varepsilon > 0$) with only a polynomial number of queries to the noisy value oracle, which improves the exponential query complexity of [Singer et al., 2018]. For general matroid constraints, we show the first constant approximation algorithm in the presence of noise. Our main approaches are to design a novel local search framework that can handle the effect of noise and to construct certain smoothing surrogate functions for noise reduction.
Cellular sheaves equip graphs with a "geometrical" structure by assigning vector spaces and linear maps to nodes and edges. Graph Neural Networks (GNNs) implicitly assume a graph with a trivial underlying sheaf. This choice is reflected in the structure of the graph Laplacian operator, the properties of the associated diffusion equation, and the characteristics of the convolutional models that discretise this equation. In this paper, we use cellular sheaf theory to show that the underlying geometry of the graph is deeply linked with the performance of GNNs in heterophilic settings and their oversmoothing behaviour. By considering a hierarchy of increasingly general sheaves, we study how the ability of the sheaf diffusion process to achieve linear separation of the classes in the infinite time limit expands. At the same time, we prove that when the sheaf is non-trivial, discretised parametric diffusion processes have greater control than GNNs over their asymptotic behaviour. On the practical side, we study how sheaves can be learned from data. The resulting sheaf diffusion models have many desirable properties that address the limitations of classical graph diffusion equations (and corresponding GNN models) and obtain competitive results in heterophilic settings. Overall, our work provides new connections between GNNs and algebraic topology and would be of interest to both fields.